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Entanglement negativity
[Peres, 1996,…]



My plan for today

• Entanglement negativity for free fermion—hard to 
compute

• Entanglement negativity for Conformal field 
theory—can measure the entanglement spread  
under quantum quenches

• Entanglement negativity for Chern-Simon theories  
can relate to geometry and topology
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FIG. 1: Setup for a local quantum quench. Two separate CFTs de-
fined on two semi-infinite lines are joined together at their endpoints.
Then quasiparticles, which may be viewed as entangled pairs, are
generated at the jointing point, and propagate freely through the sys-
tem. The entanglement negativity between two intervals which are
far from each other may be built with the help of these propagating
entangled pairs.

(1+1) dimensional critical system is Lorentz invariant at the
low energy limit, we can utilize the power of conformal field
theory and understand the universal feature of this dynamical
phenomenon.
The rest of the paper is organized as follows. In part B of

this section, we give a brief review of path integral represen-
tation of the entanglement negativity, and then introduce the
CFT setup for a local quantum quench in part C. In Section
II, by using CFT approach, we compute the time evolution
of the entanglement negativity for two adjacent intervals in
part A, and two disjoint intervals in part B. We consider both
symmetric and asymmetric cases. In section III, we describe
the numerical method of calculating the entanglement nega-
tivity for a harmonic chain, based on which we study the local
quench of the entanglement negativity. Then we compare the
numerical results with the CFT results. In section IV, we con-
clude our work and list some interesting future problems to be
studied.

B. Entanglement negativity in quantum field theory

A detailed description of path integral representation of the
entanglement negativity can be found in Ref.[21]. For the
completeness of this paper, we give a brief review here.
First, as discussed in Ref.[21], by using a replica trick, one

can relate the entanglement negativity with the integer powers
of ρT2

A1∪A2
as

EA1,A2 = lim
ne→1

lnTr
(
ρT2
A1∪A2

)ne

, (5)

where ne is an even integer, and the density matrix ρ may be
expressed as a (euclidean) path integral

ρ =
1

Z

∫
[dφ(x, τ)]

∏

x

δ (φ(x, 0) − φ′(x′))

×
∏

x

δ
(
φ(x,β) − φ

′′

(x
′′

)
)
e−SE ,

(6)

where SE is the euclidean action and Z = Tre−βH is the
partition function. Now we consider subsystems A1 and A2

located in intervals [u1, v1] and [u2, v2], respectively. Then the
reduced density matrix ρA1∪A2 may be obtained by sewing
together all the points along edges τ = 0 and τ = β except
the points in A1 ∪ A2. That is, we leave two open cuts at
[u1, v1] and [u2, v2] along τ = 0.
Next, before we compute Tr

(
ρT2
A1∪A2

)ne

, it is beneficial to
see how to calculate Tr (ρA1∪A2)

n first. In order to calculate
Tr (ρA1∪A2)

n, we consider n copies of the cut plane, and then
sew together the cut [ui, vi]

j
τ=0− with the cut [ui, vi]

j+1
τ=0+ for

i = 1, 2 and all the copies j = 1, · · · , n. Note that for j = n,
we sew together the cut [ui, vi]

j=n
τ=0− with the cut [ui, vi]

j=1
τ=0+ .

In this way, we define a n-sheeted Riemann surface Rn. The
trace of (ρA1∪A2)

n is then given by

Tr (ρA1∪A2)
n =

ZRn

Zn
, (7)

where ZRn
is the partition function for the orbifold CFT on

Rn. Rather than dealing with the fields on a nontrivial mani-
fold, it is found more convenient to work on a single complex
plane. It turns out Eq.(7) can be expressed in terms of lo-
cal twisted fields defined at (ui, 0) and (vi, 0) on the complex
plane as follows

Tr (ρA1∪A2)
n =

〈
Tn(u1)T̄n(v1)Tn(u2)T̄n(v2)

〉
. (8)

Intuitively, the effect of twist fields Tn andT̄n is shown in Fig.
2. Winding anticlockwise (clockwise) around the twist field
Tn (T̄n), once the branch cut is crossed, one will go from layer
j to layer j + 1.
With the introduction of twist fields, the expression of

Tr
(
ρT2
A1∪A2

)n
is very straightforward. As discussed in

Ref.[20, 21], the effect of partial transposition with respect to
A2 is equivalent to changing the two twist operators Tn(u2)
and T̄n(v2). Then one has

Tr
(
ρT2
A1∪A2

)n
=
〈
Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)

〉
. (9)

If the two intervals [u1, v1] and [u2, v2] are adjacent to each
other, we simply set u2 → v1, and then Eq. (9) can be written
as

Tr
(
ρT2
A1∪A2

)n
=
〈
Tn(u1)T̄ 2

n (u2)Tn(v2)
〉
. (10)

Therefore, from Eqs. (5), (9) and (10), it is found that the com-
putation of the entanglement negativity reduces to the compu-
tation of expectation values of twist fields in a complex plane.

C. CFT approach to a local quench

Before we study the CFT approach to a local quantum
quench, it is beneficial to comment on the difference between
local quenches and global quenches. Local quenches are more
complicated than global quenches because they are inhomo-
geneous. For global quenches, we change the parameters of a
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A2
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A2 A2
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A1 A1

A2 A2

A2
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Figure 8: (a) The reduced density matrix ⇢A1[A2 , which is obtained based on the wave-

functional in Fig.7 (c). (b) The partially transposed reduced density matrix ⇢

T
A2

A1[A2
, which

is obtained by switching A2 and A

0
2 in (a).

after gluing, two S

3 are contributed by the 3-balls in the first and fourth rows in Fig. 8

(d). It is noted that there is no Wilson line threading through these two S

3, and therefore

each of them contributes Z(S3) after the surgery. The other two S

3 are contributed by

the 3-balls in the second and third rows. Since there are Wilson lines threading through

these two S

3, each of them contributes Z(S3
, R̂a) after the surgery.

For the 4no tubes, 2no tubes are contributed by the ones that connect the first (third)

and second (fourth) rows of 3-balls. There are no Wilson lines threading through these

2no tubes. Therefore, after the surgery procedure in Fig. 1, each of these tubes contributes

Z(S3). The other 2no tubes are contributed by the tubes that connect A1�A1 (A0
1�A

0
1)

in the second row, and the ones that connect A0
2�A

0
2 (A2�A2) in the third row. For these

2no tubes, since there are Wilson lines threading through them, each tube contributes a

factor Z(S3
, R̂a) after the surgery.
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Entanglement negativity is a new quantity of characterizing the quantum entanglement for a general mixed
state. However, no formula for the entanglement negativity is derived in free-fermion systems. In this paper, we
demonstrate, in an elementary manner, the entanglement negativity in free-fermion systems can be obtained by
use of the overlap matrices. For a tripartite system, if the ground state of fermions can be factored into triples
of modes, we show that the partially transposed reduced density matrix can be factorized and the entanglement
negativity has a simple form. However, the factorability of the ground state in a tripartite system does not hold
in general. In this situation, the partially transposed reduced density matrix can be expressed in terms of the
Kronecker product of matrices. The entanglement negativity can be directly computed from E = lnTr|⇢TA2

A

|.
We explicitly compute the entanglement negativity for the Su-Schrieffer-Heeger model, the integer Quantum
Hall state, and a homogeneous one-dimensional chain. We find that the entanglement negativity for the integer
quantum Hall states shows an area law behavior. For the entanglement negativity of two adjacent intervals in a
homogeneous one-dimensional gas, we find agreement with the conformal field theory. Our method provides a
numerically feasible way to compute the entanglement negativity in free-fermion systems.

PACS numbers:

I. INTRODUCTION

The study of quantum entanglement provides a powerful
tool to analyze the many-body states in condensed matter
physics1–8. The most celebrated measure of entanglement is
given by the entanglement entropy (von Neumann entropy)
S
A

of the reduced density matrix of the subsystem A. This
quantity measures the entanglement between two complemen-
tary subsystems A and B, when the total system is in a pure
state. One remarkably common result is an area law behavior
of the entanglement entropy, which grows proportionally with
the boundary between two subsystems8. An important excep-
tion is the one-dimensional systems at criticality, where the
entanglement entropy has a logarithmic scaling behavior1,6,8

and have been understood by use of a conformal field theory
(CFT) approach2,6.

Up to date, the entanglement entropy cannot characterize
the measures of entanglement for a mixed state. Hence, a
proper measure of entanglement for a mixed state has been
proposed—the entanglement negativity9–11. Suppose a tripar-
tite system is divided into A

1

, A
2

, and B subsystems. The
ground state after tracing out the degrees of freedom in B
subsystem is a general mixed state. The entanglement nega-
tivity, which quantifies the entanglement between A

1

and A
2

,
is obtained by partial transpose (with respect to the degrees
of freedom in A

2

) of the reduced density of matrix ⇢
A1[A2 .

To be more precise, for a given reduced density matrix on a
Hilbert space H = H

A1 ⌦ H
A2 , the partially transposed re-

duced density matrix is defined as

h�
A1i�A2j |⇢TA2

A

|�
A1k�A2li = h�

A1i�A2l|⇢A|�A1k�A2ji,
(1)

where |�
A1ii and |�

A1ii are two arbitrary bases in H
A1 and

H
A2 , respectively. Then the entanglement negativity is

E := lnTr|⇢TA2
A

|, (2)

where Tr|⇢TA2
A

| is the sum of all absolute values of the eigen-
values of ⇢

T

A2
A

. Recently, the entanglement negativity has
been extensively studied in numerous many-body systems,
e.g., harmonic oscillators in one dimension14–19, quantum spin
chains20–26, and systems with topological orders27,28. A CFT
approach12,13 and many useful numerical methods are also
developed, including tree tensor techniques29, Monte Carlo
simulations30,31, and rational interpolations32. Further studies
on non-equilibrium situations33–36 and finite temperature33,37

refine our understanding of the entanglement negativity.
Although studies on the entanglement negativity thrive, no

formula has been derived in free-fermion systems. In a recent
study38, Eisler and Zimborás derived a lower bound of the
entanglement negativity for a free-fermion system from the
Gaussian operators. However, an exact expression of the en-
tanglement negativity in free-fermion systems is still missing.
In this paper, we demonstrate a systematical way to compute
the entanglement negativity in free-fermion systems by use of
the overlap matrices. The overlap matrices are built up from
the the single-particle states �

n

corresponding to the lowest
N energy levels of the system39–43

[M
�

]

nm

=

Z
�

ddx�⇤
n

(x)�
m

(x), , n,m = 1, · · · , N, (3)

where the integration is restricted to the subsystems � =

A
1

, A
2

or B in arbitrary dimension d. We show that for a
tripartite system, when the overlap matrices M

A1 , M
A2 , and

M
B

can be simultaneously diagonalized, the ground state of
fermions can be factored into triples of modes. In this situa-
tion, the partially transposed reduced density matrix can be
factorized and the entanglement negativity can be obtained
from the spectra of the overlap matrices. On the other hand,

a mixed state
(after tracing out B)

Partial transpose:

|�A↵ii HA↵basis of

Entanglement negativity:

measuring the negative eigenvalues of ⇢
TA2
A

Tr|⇢TA2
A | =

X

i

|�i| = 1� 2
X

�i<0

�iE := lnTr|⇢TA2
A |



e.g., A entangled state | i = 1p
2
(|10i+ |01i)

|10ih01| ! |11ih00|

⇢ = | ih | =

2

6664

1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0

0 0 0 0

3

7775

|1A0Bi |0A1Bi |0A0Bi |1A1Bi

⇢T =

2

6664

1
2 0 0 0

0 1
2 0 0

0 0 0 1
2

0 0 1
2 0

3

7775

�i = {1
2
,
1

2
,
1

2
,�1

2
}

E = lnTr|⇢T | = ln2 capture the entanglement!



Entanglement negativity for free fermions

A pure state (a bipartite system)
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when the simultaneous diagonalizability of the overlap matri-
ces does not hold, the factorability of the ground state in a
tripartite system is failed. In this situation, the partially trans-
posed reduced density matrix can only be expressed in terms
of the Kronecker product of matrices. Then the entanglement
negativity is directly obtained from E = lnTr|⇢TA2

A

|.
The paper is organized as follows: In Sec. II, we derive

the entanglement negativity for a pure state. In Sec. III A, we
obtain the entanglement negativity for a mixed state when the
ground state can be factored into triples of modes in a tripartite
system. We find that the entanglement negativity for the inte-
ger quantum Hall state satisfies an area law. In Sec. III B, we
derive the entanglement negativity for a general mixed state.
We compute the entanglement negativity for free fermions on
a ring and show the entanglement negativity is in agreement
with CFT. In Sec. IV, we conclude our results.

II. ENTANGLEMENT NEGATIVITY FOR PURE STATES

Let us consider a bipartite system that the ground state can
be Schmidt decomposed as

| i =
X
i

C
i

|�
Ai

�
Bi

i, (4)

where C
i

is the coefficient that in between zero and one and
the system is bipartite into A and B parts. The density matrix
and the reduced density matrix are defined as

⇢ = | ih | =
X
i,j

C
i

C
j

| 
Ai

 
Bi

ih 
Aj

 
Bj

|,

⇢
A

= Tr

B

⇢ =

X
i

C2

i

| 
Ai

ih 
Ai

|. (5)

One can define a partial transpose of the density matrix as

⇢TB

=

X
i,j

C
i

C
j

| 
Ai

 
Bj

ih 
Aj

 
Bi

|. (6)

The trace norm of ⇢TB is defined by

Tr|⇢TB | :=
X
i

|⇤
i

|, (7)

where ⇤
i

is the eigenvalue of ⇢TB .
The (logarithmic) entanglement negativity is defined as

E := lnTr|⇢TB |. (8)

It has been shown in Ref. [12] that Tr|⇢TB | =

lim

n

e

!1

Tr(⇢TB

)

n

e , where n
e

is an even number.
Following from Ref. [12], the even power of ⇢TB is

(⇢TB

)

n

e

=

X
i,j

Cn

e

i

Cn

e

j

| 
Ai

 
Bj

ih 
Ai

 
Bj

|. (9)

Then we have

Tr(⇢TB

)

n

e

= (

X
i

Cn

e

i

)

2

= (Tr⇢
n

e

/2

A

)

2. (10)

Hence the entanglement negativity is

E = lnTr|⇢TB | = ln lim

n

e

!1

Tr(⇢TB

)

n

e

= 2ln(

X
i

C
i

) = 2lnTr⇢
1/2

A

. (11)

Notice that Tr(⇢TB

)

2

= Tr(⇢TB

) = 1 =

P
i

C2

i

. And the
entanglement negativity is equal to Renyi entropy at n = 1/2,
i.e., E = S

1/2

A

= 2lnTr⇢
1/2

A

.

A. Free-fermion systems

Let us start at the Hamiltonian for free fermions

H =

X
↵=1

✏
↵

d†
↵

d
↵

, (12)

where d
↵

is the fermion operator with corresponding energy
✏
↵

. Following from Ref. [39], one can find a unitary matrix
U
i↵

such that

U
i↵

d†
↵

|0i = (

p
P
i

d†
Ai

+

p
1� P

i

d†
Bi

)|0i, (13)

where d†
A(B)i

is the i’th fermion operator in subsystem A(B)

with probability P
i

in subsystem A.
The ground state of a biparitite system can be expressed as

| i =
NY
i=1

(

p
P
i

d†
Ai

+

p
1� P

i

d†
Bi

)|0i, (14)

where N is the total number of particles in the system.
Now we introduce the overlap matrix

[M
A(B)

]

↵�

= hP
A(B)

u
↵

,P
A(B)

u
�

i, (15)

where |u
↵

i = d†
↵

|0i and P
A(B)

is the orthogonal projection
operator on Hilbert space A(B). The probability P

i

for an
occupied state at subsystem A is exactly the i-th eigenvalue
of M

A

(see Refs. [39,41]). Notice that M
A

= I � M
B

that indicates both M
A

and M
B

can be simultaneously di-
agonalized by a unitary matrix U , U †M

A

U = diag(P
i

) and
U†M

B

U = diag(1� P
i

).
One can rewrite the ground state in the occupation basis

| i =
NY
i=1

(

p
P
i

d†
Ai

+

p
1� P

i

d†
Bi

)|0i,

=

X
↵

C
↵

|n
A(B)1

n
A(B)2

· · ·n
A(B)N

i, (16)

where n
A(B)i

= 0 or 1 is the occupation number at i-th state.
The sum of C

↵

is

X
↵

C
↵

=

NY
i=1

(

p
P
i

+

p
1� P

i

). (17)
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A
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is
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From Eq. (11), we obtain the entanglement negativity

E = 2ln(

X
i

C
i

) = 2

X
i

ln(

p
P
i

+

p
1� P

i

)

=

X
i

ln(1 + 2

p
P
i

(1� P
i

)). (18)

On the other hand, we can compute the entanglement neg-
ativity directly from the partially transposed density matrix
⇢TB . The density matrix from the ground state under occupa-
tion basis in Eq. (16) is

⇢ =

O
i
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P
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P
i

(1� P
i

)p
P
i

(1� P
i

) 1� P
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◆
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where the basis is {|1
Ai

0

Bi

i, |0
Ai

1

Bi

i}.
The partially transposed density matrix ⇢TB is
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where the basis is {|1
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i, |0
Ai

1

Bi

i, |0
Ai

0

Bi

i, |1
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1

Bi
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Notice that the eigenvalues of the Kronecker product of

two matrices W
A

⌦ W
B

are �
i

µ
j

, where �
i

and µ
j

are the
eigenvalues of W

A

and W
B

, respectively. The eigenvalues
of ⇢TB are the product of one of the eigenvalues of each
⇢TB

i

. The set of eigenvalues of ⇢TB

i

is {⌅
i,↵

} = {P
i

, 1 �
P
i

,
p
P
i

(1� P
i

),�p
P
i

(1� P
i

)} with ↵ is the label of the
elements in the set. Hence the entanglement is

E = lnTr|⇢TB | = ln

Y
i

X
↵

(|⌅
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|)

=

X
i

ln(1 + 2

p
P
i

(1� P
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Here we get the indentical expression as Eq. (18).

1. Su-Schrieffer-Heeger (SSH) model

Let us consider an one-dimensional tight binding Hamilto-
nian (SSH model) under periodic boundary condition

H =

X
i

t
1

c†
a

i

c
b

i

+ t
2

c†
a

i+1
c
b

i

+ h.c.

(22)

where t
1

, t
2

> 1 and c
a(b)

i

is the fermion operator. The con-
figuration of a bipartite ring is shown in Fig. 1. We consider
the lengths of A and B are equal. The overlap matrix M

A

has two eigenstates with 0.5 eigenvalue when t
2

> t
1

. On the
other hand, there is no eigenstates of M

A

with 0.5 eigenvalue
when t

1

> t
2

.
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FIG. 1: (a) SSH model on a one-dimensional ring. The hopping
amplitude of dashed(solid) lines is t1(t2). A unite cell contains two
orbitals that are pictured by • and �. The system is divided into A and
B parts by the red dashed line. (b) The configuration of a bipartite
ring. We consider the lengths of A and B are equal.
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FIG. 2: E as the function of lnL: (a) t1 = 0, t2 = 0, t1/t2 = 0.6,
and t2/t1 = 0.6; (b) t1 = t2.

We plot the entanglement negativity based on Eq. (18)
as a function of lnL with L is the length of the system in
Fig. 2. For t

1

= 0, the set of the eigenvalues of M
A

is
{P

i

} = {0, 0, · · · , 0.5, 0, 5, 1, 1, · · · , 1}, that leads to E =

2ln2. For t
2

= 0, the set of the entanglement spectrum is
{P

i

} = {0, 0, · · · , 0, 1, · · · , 1}. This implies E = 0. For
t
1

< t
2

, despite of two eigenstates of M
A

with 0.5 eigenval-
ues, other states with P

i

6= 0, 1 can contribute to the entangle-
ment negativity. Hence the entanglement negativity is greater
than 2ln2. For t

2

< t
1

, there are no states with 0.5 eigen-
values in M

A

. However, other states with P
i

6= 0, 1 can also
contribute to the entanglement negativity. Hence the entangle-
ment negativity is nonvanishing. At critical point, t

1

= t
2

, the
scaling function of the entanglement negativity is propotional
to lnL as shown in Fig. 2(b). The set of points in Fig. 2(b)
fits 0.712733 + 0.501839x. From the CFT prediction12, the
entanglement negativity is E =

c

2

ln

L

⇡

sin

⇡l

L

+ const.. In our
consideration, l/L = 1/2, that leads to E =

c

2

lnL + const..
One can read off the central charge c ⇠ 1.

2. Integer Quantum Hall state

We consider the integer quantum Hall state on a cylinder.
We choose the periodic boundary condition along y direction.
Hence k

y

is a good quantum number. The single-panicle state
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From Eq. (11), we obtain the entanglement negativity
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On the other hand, we can compute the entanglement neg-
ativity directly from the partially transposed density matrix
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, where �
i

and µ
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are the
eigenvalues of W
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and W
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, respectively. The eigenvalues
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Here we get the indentical expression as Eq. (18).

1. Su-Schrieffer-Heeger (SSH) model

Let us consider an one-dimensional tight binding Hamilto-
nian (SSH model) under periodic boundary condition
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c
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where t
1

, t
2

> 1 and c
a(b)

i

is the fermion operator. The con-
figuration of a bipartite ring is shown in Fig. 1. We consider
the lengths of A and B are equal. The overlap matrix M

A

has two eigenstates with 0.5 eigenvalue when t
2

> t
1

. On the
other hand, there is no eigenstates of M

A

with 0.5 eigenvalue
when t

1

> t
2

.
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FIG. 1: (a) SSH model on a one-dimensional ring. The hopping
amplitude of dashed(solid) lines is t1(t2). A unite cell contains two
orbitals that are pictured by • and �. The system is divided into A and
B parts by the red dashed line. (b) The configuration of a bipartite
ring. We consider the lengths of A and B are equal.
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We plot the entanglement negativity based on Eq. (18)
as a function of lnL with L is the length of the system in
Fig. 2. For t

1

= 0, the set of the eigenvalues of M
A

is
{P
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} = {0, 0, · · · , 0.5, 0, 5, 1, 1, · · · , 1}, that leads to E =

2ln2. For t
2

= 0, the set of the entanglement spectrum is
{P

i

} = {0, 0, · · · , 0, 1, · · · , 1}. This implies E = 0. For
t
1

< t
2

, despite of two eigenstates of M
A

with 0.5 eigenval-
ues, other states with P

i

6= 0, 1 can contribute to the entangle-
ment negativity. Hence the entanglement negativity is greater
than 2ln2. For t

2

< t
1

, there are no states with 0.5 eigen-
values in M

A

. However, other states with P
i

6= 0, 1 can also
contribute to the entanglement negativity. Hence the entangle-
ment negativity is nonvanishing. At critical point, t

1

= t
2

, the
scaling function of the entanglement negativity is propotional
to lnL as shown in Fig. 2(b). The set of points in Fig. 2(b)
fits 0.712733 + 0.501839x. From the CFT prediction12, the
entanglement negativity is E =

c

2
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L

⇡
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L

+ const.. In our
consideration, l/L = 1/2, that leads to E =
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2

lnL + const..
One can read off the central charge c ⇠ 1.

2. Integer Quantum Hall state

We consider the integer quantum Hall state on a cylinder.
We choose the periodic boundary condition along y direction.
Hence k

y

is a good quantum number. The single-panicle state

|1A0Bi |0A1Bi

|10ih01| ! |11ih00|

[PYC, XW 2016]

A B

 1(x)

 2(x)

P1 1� P1

1� P2P2



Entanglement negativity for free fermions

A pure state (a bipartite system)

2

when the simultaneous diagonalizability of the overlap matri-
ces does not hold, the factorability of the ground state in a
tripartite system is failed. In this situation, the partially trans-
posed reduced density matrix can only be expressed in terms
of the Kronecker product of matrices. Then the entanglement
negativity is directly obtained from E = lnTr|⇢TA2

A

|.
The paper is organized as follows: In Sec. II, we derive

the entanglement negativity for a pure state. In Sec. III A, we
obtain the entanglement negativity for a mixed state when the
ground state can be factored into triples of modes in a tripartite
system. We find that the entanglement negativity for the inte-
ger quantum Hall state satisfies an area law. In Sec. III B, we
derive the entanglement negativity for a general mixed state.
We compute the entanglement negativity for free fermions on
a ring and show the entanglement negativity is in agreement
with CFT. In Sec. IV, we conclude our results.

II. ENTANGLEMENT NEGATIVITY FOR PURE STATES

Let us consider a bipartite system that the ground state can
be Schmidt decomposed as

| i =
X
i

C
i

|�
Ai

�
Bi

i, (4)

where C
i

is the coefficient that in between zero and one and
the system is bipartite into A and B parts. The density matrix
and the reduced density matrix are defined as

⇢ = | ih | =
X
i,j

C
i

C
j

| 
Ai

 
Bi

ih 
Aj

 
Bj

|,

⇢
A

= Tr

B

⇢ =

X
i

C2

i

| 
Ai

ih 
Ai

|. (5)

One can define a partial transpose of the density matrix as

⇢TB

=

X
i,j

C
i

C
j

| 
Ai

 
Bj

ih 
Aj

 
Bi

|. (6)

The trace norm of ⇢TB is defined by

Tr|⇢TB | :=
X
i

|⇤
i

|, (7)

where ⇤
i

is the eigenvalue of ⇢TB .
The (logarithmic) entanglement negativity is defined as

E := lnTr|⇢TB |. (8)

It has been shown in Ref. [12] that Tr|⇢TB | =

lim

n

e

!1

Tr(⇢TB

)

n

e , where n
e

is an even number.
Following from Ref. [12], the even power of ⇢TB is

(⇢TB

)

n

e

=

X
i,j

Cn

e

i

Cn

e

j

| 
Ai

 
Bj

ih 
Ai

 
Bj

|. (9)

Then we have

Tr(⇢TB

)

n

e

= (

X
i

Cn

e

i

)

2

= (Tr⇢
n

e

/2

A

)

2. (10)

Hence the entanglement negativity is

E = lnTr|⇢TB | = ln lim

n

e

!1

Tr(⇢TB

)

n

e

= 2ln(

X
i

C
i

) = 2lnTr⇢
1/2

A

. (11)

Notice that Tr(⇢TB

)

2

= Tr(⇢TB

) = 1 =

P
i

C2

i

. And the
entanglement negativity is equal to Renyi entropy at n = 1/2,
i.e., E = S

1/2

A

= 2lnTr⇢
1/2

A

.

A. Free-fermion systems

Let us start at the Hamiltonian for free fermions

H =

X
↵=1

✏
↵

d†
↵

d
↵

, (12)

where d
↵

is the fermion operator with corresponding energy
✏
↵

. Following from Ref. [39], one can find a unitary matrix
U
i↵

such that

U
i↵

d†
↵

|0i = (

p
P
i

d†
Ai

+

p
1� P

i

d†
Bi

)|0i, (13)

where d†
A(B)i

is the i’th fermion operator in subsystem A(B)

with probability P
i

in subsystem A.
The ground state of a biparitite system can be expressed as

| i =
NY
i=1

(

p
P
i

d†
Ai

+

p
1� P

i

d†
Bi

)|0i, (14)

where N is the total number of particles in the system.
Now we introduce the overlap matrix

[M
A(B)

]

↵�

= hP
A(B)

u
↵

,P
A(B)

u
�

i, (15)

where |u
↵

i = d†
↵

|0i and P
A(B)

is the orthogonal projection
operator on Hilbert space A(B). The probability P

i

for an
occupied state at subsystem A is exactly the i-th eigenvalue
of M

A

(see Refs. [39,41]). Notice that M
A

= I � M
B

that indicates both M
A

and M
B

can be simultaneously di-
agonalized by a unitary matrix U , U †M

A

U = diag(P
i

) and
U†M

B

U = diag(1� P
i

).
One can rewrite the ground state in the occupation basis

| i =
NY
i=1

(

p
P
i

d†
Ai

+

p
1� P

i

d†
Bi

)|0i,

=

X
↵

C
↵

|n
A(B)1

n
A(B)2

· · ·n
A(B)N

i, (16)

where n
A(B)i

= 0 or 1 is the occupation number at i-th state.
The sum of C

↵

is

X
↵

C
↵

=

NY
i=1

(

p
P
i

+

p
1� P

i

). (17)
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From Eq. (11), we obtain the entanglement negativity

E = 2ln(

X
i

C
i

) = 2

X
i

ln(

p
P
i

+

p
1� P

i

)

=

X
i

ln(1 + 2

p
P
i

(1� P
i

)). (18)

On the other hand, we can compute the entanglement neg-
ativity directly from the partially transposed density matrix
⇢TB . The density matrix from the ground state under occupa-
tion basis in Eq. (16) is

⇢ =

O
i

✓
P
i

p
P
i

(1� P
i

)p
P
i

(1� P
i

) 1� P
i

◆
, (19)

where the basis is {|1
Ai

0

Bi

i, |0
Ai

1

Bi

i}.
The partially transposed density matrix ⇢TB is

⇢TB

=
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⇢TB
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=
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0BB@
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0 0 0
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0 0
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(20)

where the basis is {|1
Ai

0

Bi

i, |0
Ai

1

Bi

i, |0
Ai

0

Bi

i, |1
Ai

1

Bi

i}.
Notice that the eigenvalues of the Kronecker product of

two matrices W
A

⌦ W
B

are �
i

µ
j

, where �
i

and µ
j

are the
eigenvalues of W

A

and W
B

, respectively. The eigenvalues
of ⇢TB are the product of one of the eigenvalues of each
⇢TB

i

. The set of eigenvalues of ⇢TB

i

is {⌅
i,↵

} = {P
i

, 1 �
P
i

,
p
P
i

(1� P
i

),�p
P
i

(1� P
i

)} with ↵ is the label of the
elements in the set. Hence the entanglement is

E = lnTr|⇢TB | = ln

Y
i

X
↵

(|⌅
i,↵

|)

=

X
i

ln(1 + 2

p
P
i

(1� P
i

)). (21)

Here we get the indentical expression as Eq. (18).

1. Su-Schrieffer-Heeger (SSH) model

Let us consider an one-dimensional tight binding Hamilto-
nian (SSH model) under periodic boundary condition

H =

X
i

t
1

c†
a

i

c
b

i

+ t
2

c†
a

i+1
c
b

i

+ h.c.

(22)

where t
1

, t
2

> 1 and c
a(b)

i

is the fermion operator. The con-
figuration of a bipartite ring is shown in Fig. 1. We consider
the lengths of A and B are equal. The overlap matrix M

A

has two eigenstates with 0.5 eigenvalue when t
2

> t
1

. On the
other hand, there is no eigenstates of M

A

with 0.5 eigenvalue
when t

1

> t
2

.
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FIG. 1: (a) SSH model on a one-dimensional ring. The hopping
amplitude of dashed(solid) lines is t1(t2). A unite cell contains two
orbitals that are pictured by • and �. The system is divided into A and
B parts by the red dashed line. (b) The configuration of a bipartite
ring. We consider the lengths of A and B are equal.
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FIG. 2: E as the function of lnL: (a) t1 = 0, t2 = 0, t1/t2 = 0.6,
and t2/t1 = 0.6; (b) t1 = t2.

We plot the entanglement negativity based on Eq. (18)
as a function of lnL with L is the length of the system in
Fig. 2. For t

1

= 0, the set of the eigenvalues of M
A

is
{P

i

} = {0, 0, · · · , 0.5, 0, 5, 1, 1, · · · , 1}, that leads to E =

2ln2. For t
2

= 0, the set of the entanglement spectrum is
{P

i

} = {0, 0, · · · , 0, 1, · · · , 1}. This implies E = 0. For
t
1

< t
2

, despite of two eigenstates of M
A

with 0.5 eigenval-
ues, other states with P

i

6= 0, 1 can contribute to the entangle-
ment negativity. Hence the entanglement negativity is greater
than 2ln2. For t

2

< t
1

, there are no states with 0.5 eigen-
values in M

A

. However, other states with P
i

6= 0, 1 can also
contribute to the entanglement negativity. Hence the entangle-
ment negativity is nonvanishing. At critical point, t

1

= t
2

, the
scaling function of the entanglement negativity is propotional
to lnL as shown in Fig. 2(b). The set of points in Fig. 2(b)
fits 0.712733 + 0.501839x. From the CFT prediction12, the
entanglement negativity is E =

c

2

ln
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⇡
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⇡l

L

+ const.. In our
consideration, l/L = 1/2, that leads to E =
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One can read off the central charge c ⇠ 1.

2. Integer Quantum Hall state

We consider the integer quantum Hall state on a cylinder.
We choose the periodic boundary condition along y direction.
Hence k
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is a good quantum number. The single-panicle state
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From Eq. (11), we obtain the entanglement negativity
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On the other hand, we can compute the entanglement neg-
ativity directly from the partially transposed density matrix
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Here we get the indentical expression as Eq. (18).

1. Su-Schrieffer-Heeger (SSH) model

Let us consider an one-dimensional tight binding Hamilto-
nian (SSH model) under periodic boundary condition
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X
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where t
1

, t
2

> 1 and c
a(b)

i

is the fermion operator. The con-
figuration of a bipartite ring is shown in Fig. 1. We consider
the lengths of A and B are equal. The overlap matrix M

A

has two eigenstates with 0.5 eigenvalue when t
2

> t
1

. On the
other hand, there is no eigenstates of M

A

with 0.5 eigenvalue
when t

1

> t
2

.
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FIG. 1: (a) SSH model on a one-dimensional ring. The hopping
amplitude of dashed(solid) lines is t1(t2). A unite cell contains two
orbitals that are pictured by • and �. The system is divided into A and
B parts by the red dashed line. (b) The configuration of a bipartite
ring. We consider the lengths of A and B are equal.
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FIG. 2: E as the function of lnL: (a) t1 = 0, t2 = 0, t1/t2 = 0.6,
and t2/t1 = 0.6; (b) t1 = t2.

We plot the entanglement negativity based on Eq. (18)
as a function of lnL with L is the length of the system in
Fig. 2. For t

1

= 0, the set of the eigenvalues of M
A

is
{P

i

} = {0, 0, · · · , 0.5, 0, 5, 1, 1, · · · , 1}, that leads to E =

2ln2. For t
2

= 0, the set of the entanglement spectrum is
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} = {0, 0, · · · , 0, 1, · · · , 1}. This implies E = 0. For
t
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2

, despite of two eigenstates of M
A

with 0.5 eigenval-
ues, other states with P
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6= 0, 1 can contribute to the entangle-
ment negativity. Hence the entanglement negativity is greater
than 2ln2. For t

2

< t
1

, there are no states with 0.5 eigen-
values in M

A

. However, other states with P
i

6= 0, 1 can also
contribute to the entanglement negativity. Hence the entangle-
ment negativity is nonvanishing. At critical point, t

1

= t
2

, the
scaling function of the entanglement negativity is propotional
to lnL as shown in Fig. 2(b). The set of points in Fig. 2(b)
fits 0.712733 + 0.501839x. From the CFT prediction12, the
entanglement negativity is E =
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L

+ const.. In our
consideration, l/L = 1/2, that leads to E =
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lnL + const..
One can read off the central charge c ⇠ 1.

2. Integer Quantum Hall state

We consider the integer quantum Hall state on a cylinder.
We choose the periodic boundary condition along y direction.
Hence k

y

is a good quantum number. The single-panicle state
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Here we get the indentical expression as Eq. (18).
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where t
1

, t
2

> 1 and c
a(b)

i

is the fermion operator. The con-
figuration of a bipartite ring is shown in Fig. 1. We consider
the lengths of A and B are equal. The overlap matrix M
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has two eigenstates with 0.5 eigenvalue when t
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1

. On the
other hand, there is no eigenstates of M

A

with 0.5 eigenvalue
when t
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FIG. 1: (a) SSH model on a one-dimensional ring. The hopping
amplitude of dashed(solid) lines is t1(t2). A unite cell contains two
orbitals that are pictured by • and �. The system is divided into A and
B parts by the red dashed line. (b) The configuration of a bipartite
ring. We consider the lengths of A and B are equal.
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We plot the entanglement negativity based on Eq. (18)
as a function of lnL with L is the length of the system in
Fig. 2. For t
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. However, other states with P
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6= 0, 1 can also
contribute to the entanglement negativity. Hence the entangle-
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, the
scaling function of the entanglement negativity is propotional
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2. Integer Quantum Hall state

We consider the integer quantum Hall state on a cylinder.
We choose the periodic boundary condition along y direction.
Hence k
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is a good quantum number. The single-panicle state
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Very hard to compute!!!



• Entanglement negativity for free fermion—hard to 
compute

• Entanglement negativity for Conformal field 
theory—can measure the entanglement spread  
under quantum quenches

• Entanglement negativity for Chern-Simon theories  
can relate to geometry and topology



Recent development of computing 
entanglement negativity for a many body state!!! 

• A replica trick + QFT (can be CFT or CS) 

• Monte Carlo simulations 

• Tensor network (MPS) 

• An overlap matrix method (free fermions) 

• Representation theory (Valance bond solids) 

• A surgery method 

[Calabrese, Cardy, Tonni, 12,13]

[Chung, Alba, Bonnes, Chen, Lauchli,13]

[Calabrese, Tagliacozzo, Tonni,13]

[P.-Y., Chang, Wen,16]

[Santos, Korepin,16]

[Wen, P.-Y., Chang, Ryu,16]

[Wen, P.-Y., Chang, Ryu,15]



A path integral representation 
and a replica trick

imaginary time interval (0, �) [7, 11]
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space, and ⌧ is the imaginary time. The rows and columns of the density matrix are
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2. Partially transposed density matrix
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As a comparison, it is noted that tr (⇢A1[A2)
n has the expression

tr
⇣
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=

Z nY
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~x
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0 (~x)d'(k)
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'
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~x2A

�

h
'

(k)
0 (~x)� '

(k+1)
� (~x)

i
⇢
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{'(k)
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� (~x)}
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(1.12)

Once we obtain tr
⇣
⇢

T
A2

A1[A2

⌘n

, we can calculate the entanglement negativity based on

Eq.(1.6).

1.2 Chern-Simons theory and surgery

One may refer to the seminal paper [37] for details of the Chern-Simons theory. Here

we mainly review the properties of Chern-Simons theory that will be used in our study

of entanglement negativity. The Chern-Simons theory action with a gauge group G on a

three-manifold M is given by

SCS =
k

4⇡

Z

M

tr

✓
A ^ dA+

2

3
A ^ A ^ A

◆
, (1.13)

where ‘tr0 is the trace over the fundamental representation of the gauge group G, A is

the G-connection on a genetic three-manifold M , and k is the coupling constant, which

is quantized. Chern-Simons theory is a topological field theory in the sense that the

correlation functions do not depend on the metric of the manifold M . Since the Chern-

Simons theory action does not contain the metric, the partition function

Z(M) =

Z
[DA]eiSCS(A)

, (1.14)

can define a topological invariant of the manifold M . Besides the partition function as

an invariant of three-manifolds, links and knots inside three-manifolds can also be seen
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Figure 4. Path integral representation of Tr(⇢T2
A )n = Tr(⇢C2

A )n for n = 3.

In the following the subscript C will be understood in the expectation values, if not
di↵erently stated.

3.2. The partial transposition and the negativity in QFT.

The partial transposition of the reduced density matrix ⇢A with respect to the second
interval A2 corresponds to the exchange of row and column indices in A2. In the path
integral representation, this is equivalent to interchange the upper and lower edges of
the second cut in ⇢A as depicted in the middle of Fig. 2. If we join n copies of ⇢T2

A

cyclically, we have an n-sheeted Riemann surface where row and column indices are
reversed compared to those of a correlation function of four twist fields, as it should
be clear from the middle of Fig. 2. This problem can be however solved very easily
by reversing the order of the column and row indices in A2 as in the bottom of Fig. 2,
to obtain the reversed partial transpose ⇢C2

A . This is related to the partial transpose
as ⇢C2

A = C⇢T2
A C, where C reverses the order of indices either on the lower or on

the upper cut and satisfies C2 = 1. Clearly Tr(⇢T2
A )n = Tr(⇢C2

A )n and so Tr(⇢T2
A )n is

the partition function on the n-sheeted surface obtained by joining cyclically n of the
above ⇢C2

A as in Fig. 4. In this case, the order of the row and column indices is the
right one to identify this partition function with the four-point function of the twist
fields

Tr(⇢T2
A )n = Tr(⇢C2

A )n = hTn(u1)T n(v1)T n(u2)Tn(v2)i , (33)

i.e. the partial transposition has the net e↵ect to exchange two twist operators
compared to Eq. (32). We notice that we could easily have worked out Tr(⇢T2

A )n

without introducing the reverse partial transpose. However this is a very useful
technical concept because it allows to identify Tr(⇢T2

A )n with the correlation function
of already known and studied twist fields, without the need of introducing new fields.

For n = 2, T2 = T 2 and so

Tr⇢2A = Tr(⇢T2
A )2 , (34)

which also straightforwardly follows from the properties of the trace and so it is true
for any matrix ⇢ replacing ⇢A above.

To replace ⇢T2
A with ⇢C2

A it has been fundamental to consider integer cyclical
traces. The operator C enters in quantities like Tr(⇢A⇢

T2
A ) which is in fact the partition

A1 A2

�

[Calabrese, Cardy, Tonni, 12]

tr(⇢
TA2
A1[A2

)3 =
Z3,2

Z3

Partition function on a n-sheeted Riemann surface
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3. Entanglement negativity can be obtained by taking ne ! 1

are the so called Renyi entropy and von Neumann entropy defined as follows

S

(n)
A =

1

1� n

ln Tr⇢nA, and S

vN
A = �Tr⇢A ln ⇢A, (1.1)

where n is an integer, and ⇢A = TrB⇢ is the reduced density matrix of subsystem A,

with ⇢ = | ih |. The Renyi entropy and von Neumann entropy are related by S

vN
A =

limn!1 S
(n)
A . It is noted that when ⇢ corresponds to a pure state, one has the nice property

that S

(n)
A = S

(n)
B and S

vN
A = S

vN
B . For a mixed state, it is found that the quantum and

classical correlations cannot be explicitly separated in these entanglement measures. Now

we consider two subsystems A1 and A2 which are embedded in a larger system, and

therefore ⇢A1[A2 may correspond to a mixed state. In this case, a useful quantity to study

the entanglement between A1 and A2 is the Renyi mutual information

I

(n)
A1A2

= S

(n)
A1

+ S

(n)
A2

� S

(n)
A1[A2

, (1.2)

which is symmetric in A1 and A2 by definition. Similar with the von Neumann entropy,

by taking the n ! 1 limit, one can obtain the (von Neumann) mutual information

IA1A2 = lim
n!1

I

(n)
A1A2

. (1.3)

Another quantity under extensive study, which is useful in characterizing the quantum

entanglement in mixed states, is the entanglement negativity[8, 9]. To be concrete, for a

reduced density matrix ⇢A1A2 which describes a mixed state in the Hilbert spaceHA1⌦HA2 ,

a partial transposition of ⇢A1A2 with respect to the degrees of freedom in region A2 is

defined as

he(1)i e

(2)
j |⇢T2

A1[A2
|e(1)k e

(2)
l i = he(1)i e

(2)
l |⇢A1[A2 |e(1)k e

(2)
j i, (1.4)

where T2 represents the partial transposition over A2, |e(1)i i and |e(2)j i are arbitrary bases

in HA1 and HA2 , respectively. Then the entanglement negativity can be defined as

EA1A2 := ln tr
��
⇢

T2
A1[A2

��
. (1.5)

To calculate the entanglement negativity in a quantum filed theory, it is convenient to

use the replica trick as follows [10, 11]

EA1A2 = lim
n
e

!1
ln tr

�
⇢

T2
A1[A2

�n
e

, (1.6)

where ne is an even integer.

Recently, the entanglement negativity has been extensively studied in conformal field

theories [10, 11, 12], quantum spin chain systems [13, 14], coupled harmonic oscillators

2

Zne

Zne
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Gluing n copies of the above:
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Gluing n copies of the above:

Now we have enough ingredients!!! 
Let us compute the entanglement negativity!!
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FIG. 6: Entanglement negativity E for two symmetric disjoint intervals as a function of time. Here we choose central charge c = 1, ϵ = 1,
(d, l) = (40, 10), (60, 10) and (80, 10), respectively. Shown in (a) is the CFT result, and (b) is the numerical calculation based on a critical
harmonic chain.

Note that in the study of negativity evolution after a global
quench, it was found that E(t) shows the same behavior as
the Renyi mutual information apart from the prefactor[25].
For the local quench studied here, by comparing our result
in Eq.(37) with the result of mutual information in Ref.[35], it
is found that the expressions are also the same except for the
prefactor. In other words, our results parallel with the story in
negativity evolution after a global quench.
As shown in Fig.6(a), we plot the evolution of the entan-

glement negativity with different (d, l) according to Eq.(37).
A ‘light-cone’ effect can be observed: For t < d, there is
no entanglement negativity between A1 and A2. At t = d,
the entanglement negativity begins to develop, and reaches the
maximum approximately at t = d+ l/2. At t = d+ l, the en-
tanglement negativity decreases suddenly, which corresponds
to the entangled pairs propagating out of intervals A1 and A2

simultaneously. Note that at t = d + l/2, taking the limit
d ≫ l, one has

Et=d+ l

2
≃

c

4
ln

l

2ϵ
, (38)

which is independent of the distance d, as also can be observed
in Fig.6. That is to say, with the help of entangled pairs, we
can create a long-range entanglement between two intervals
which are far from each other.

2. Asymmetric finite intervals

In this part, we consider the asymmetric disjoint intervals.
We have multi choices as follows: (i) d1 ̸= d2, l1 = l2, (ii)
d1 = d2, l1 ̸= l2 and (iii) d1 ̸= d2, l1 ̸= l2. For simple,
we consider the case in (i), i.e., A1 ∈ [−d1 + l,−d1] and
A2 ∈ [d2, d2 + l]. Without loss of generality, we choose d1 <
d2 ≤ d1 + l.

The calculation of negativity evolution is similar with the
symmetric case, and we obtain the same result in Eq.(36). The
difference is that we should expresswij in terms of d1, d2 and
l, as explicitly shown in the appendix. By plugging the expres-
sions of wij into Eq.(36), one arrives at the time evolution of
entanglement negativity as shown in Eq.(39). One can check
that when d1 = d2 = d, the result in Eq.(37) is reproduced.
According to Eq.(39), we plot E(t) with different (d1, d2)

in Fig.7(a). Compared to the symmetric case, the ‘light-cone’
effect is still observed. The difference is that the time when
E(t) increases quickly now happens at

t = max[d1, d2], (40)

and the time when E(t) decreases quickly happens at

t = min[d1 + l, d2 + l], (41)

which is also in agreement with the quasiparticle picture.

III. NUMERICAL EVALUATION OF THE NEGATIVITY
FOR A HARMONIC CHAIN AFTER A LOCAL QUENCH

In this section, to confirm our CFT results, we study the
time evolution of the logarithmic negativity after a local quan-
tum quench on a lattice model, a critical harmonic chain. The
entanglement negativity for a harmonic chain has been nu-
merically studied in several works[8, 21, 25, 26, 36]. Here we
follow the method developed in these works, and apply it to
the local quench problem.
We will first introduce the lattice model and the covariance

matrix in part A. In part B, we introduce the evolution matrix
and show how to calculate the entanglement negativity. In
part C, we apply the method to the cases studied with CFT
approach, and compare the results accordingly.

2. Two asymmetric disjoint intervals
8

FIG. 7: Entanglement negativity E for two symmetric disjoint intervals as a function of time. Here we choose central charge c = 1, ϵ = 1,
l = 15, (d1, d2) = (50, 50), (50, 55), (50, 60), and (50, 65), respectively. Shown in (a) is the CFT result, and (b) is the numerical calculation
based on a critical harmonic chain.
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A. Harmonic chain and the covariance matrix

The Hamiltonian of the harmonic chain is

H =
N∑

n=1

[
p2n
2M

+
Mω2

0

2
q2n +

K

2
(qn+1 − qn)

2], (42)

where N is the number of sites of the chain, M is the
mass scale, ω0 is the characteristic frequency, and K is the
nearest-neighbor coupling. pn and qn denote the momentum
and position operators with canonical commutation relations
[pn, pm] = [qn, qm] = 0 and [qn, pm] = iδn,m.
For periodic boundary condition (PBC), the Fourier trans-

form of the canonical variables are
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qn =
L∑

k=1

qk
1√
L
e2πikn/L,

qk =
L∑

n=1

qn
1√
L
e−2πikn/L,

(43)

where n = 1, · · · , L. For pn, the Fourier transform is identi-
cal to qn. The Hamiltonian is diagonalized in the momentum
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L∑
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(
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p
2
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k

2
q
2
k

)
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where

ωk =

√
ω2
0 +

4K

M
sin(

πk

L
)2, k = 1, · · · , L, (PBC).

(45)

For the Dirichlet boundary condition (DBC), the Fourier
transform is not valid due to the breaking of translational sym-
metry. The canonical variables, however, obey the Fourier
sine transform

⎧
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√
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L
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(
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L

)
,

(46)

where n = 1, · · · , L. For pn, the Fourier sine transformation
is identical to qn. The Hamiltonian in the momentum space

1. Two symmetric disjoint intervals



• Entanglement negativity for free fermion—hard to 
compute

• Entanglement negativity for Conformal field 
theory—can measure the entanglement spread  
under quantum quenches

• Entanglement negativity for Chern-Simon theories  
can relate to geometry and topology



Motivation: The entanglement negativity for Chern-Simons 
theory is “topological”. And it relates to modulo S-matrix, which 

can related to anyon braiding.  
Physics realization: fractional quantum Hall systems
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⌘n

, we can calculate the entanglement negativity based on

Eq.(1.6).

1.2 Chern-Simons theory and surgery

One may refer to the seminal paper [37] for details of the Chern-Simons theory. Here

we mainly review the properties of Chern-Simons theory that will be used in our study

of entanglement negativity. The Chern-Simons theory action with a gauge group G on a

three-manifold M is given by
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where ‘tr0 is the trace over the fundamental representation of the gauge group G, A is

the G-connection on a genetic three-manifold M , and k is the coupling constant, which

is quantized. Chern-Simons theory is a topological field theory in the sense that the

correlation functions do not depend on the metric of the manifold M . Since the Chern-

Simons theory action does not contain the metric, the partition function

Z(M) =

Z
[DA]eiSCS(A)

, (1.14)

can define a topological invariant of the manifold M . Besides the partition function as

an invariant of three-manifolds, links and knots inside three-manifolds can also be seen
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as topological invariants in the Chern-Simons theory. Such a link or a knot in three-

manifolds can be defined as the “Wilson line”, that traces the holonomy of the gauge

connection on an oriented closed curve C in a given irreducible representation R̂ of G,
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We can compute the correlation functions of non-intersecting links/knots Ci, i = 1, · · · , N ,

with a representation R̂i to each Ci on a three-manifold M ,
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These links/knots correlation functions can be seen as the partition functions of a Chern-

Simons theory on a three-manifold M in the presence of Wilson loops. As shown by

Witten [37], the the partition functions are exactly calculable by canonical quantization

and surgery.

The key ingredient of computing the partition function is doing canonical quantiza-

tion of a Chern-Simons theory on a three-manifold M with boundary given by a Riemann

surface ⌃. This canonical quantization will produce a Hilbert space H⌃ with an associ-

ated state | Mi. The dual Hilbert space H⇤
⌃ with an associated state h M | state can be

obtained by reversing the orientation of the ⌃. The partition function of a Chern-Simons

theory on a (closed) three-manifold can be computed by performing the Heegaard split-

ting, which decomposes the three-manifold as the connected sum of two three-manifolds

M1 and M2 with common boundary ⌃. The original three-manifold M = M1

S
f M2

is obtained by gluing M1 and M2 through their boundary under the homeomorphism

f : ⌃ ! ⌃. This homeomorphism acting in the Hilbert space can be presented by an

operator Uf : H⌃ ! H⌃. Hence the partition can be evaluated as

Z(M) = h M2 |Uf | M1i. (1.17)

When the boundary is a sphere, i.e., ⌃ = S

2, the Hilbert space HS2 is one dimensional.

When the boundary ⌃ = T

2, which can be seen as the boundary of a solid torus T =

D ⇥ S

1, one can obtain a state in HT 2 by inserting a Wilson loop in the representation

R̂i around the non-contractible cycle in the solid torus,

| T,R̂
i

i = |R̂ii. (1.18)

The state without the Wilson loop is |0̂i, denoted as the vacuum state.

6

4. Correlators (partition function with links and knots)

as topological invariants in the Chern-Simons theory. Such a link or a knot in three-

manifolds can be defined as the “Wilson line”, that traces the holonomy of the gauge

connection on an oriented closed curve C in a given irreducible representation R̂ of G,

W

C
R(A) = trRP exp

Z

C
A. (1.15)

We can compute the correlation functions of non-intersecting links/knots Ci, i = 1, · · · , N ,

with a representation R̂i to each Ci on a three-manifold M ,

Z(M, R̂1, · · · , R̂N) = hW C1
R̂1

· · ·W C
N

R̂
N

i =
Z
[DA]

 
NY

i=1

W

C
i

R̂
i

!
eiSCS

. (1.16)

These links/knots correlation functions can be seen as the partition functions of a Chern-

Simons theory on a three-manifold M in the presence of Wilson loops. As shown by

Witten [37], the the partition functions are exactly calculable by canonical quantization

and surgery.

The key ingredient of computing the partition function is doing canonical quantiza-

tion of a Chern-Simons theory on a three-manifold M with boundary given by a Riemann

surface ⌃. This canonical quantization will produce a Hilbert space H⌃ with an associ-

ated state | Mi. The dual Hilbert space H⇤
⌃ with an associated state h M | state can be

obtained by reversing the orientation of the ⌃. The partition function of a Chern-Simons

theory on a (closed) three-manifold can be computed by performing the Heegaard split-

ting, which decomposes the three-manifold as the connected sum of two three-manifolds

M1 and M2 with common boundary ⌃. The original three-manifold M = M1

S
f M2

is obtained by gluing M1 and M2 through their boundary under the homeomorphism

f : ⌃ ! ⌃. This homeomorphism acting in the Hilbert space can be presented by an

operator Uf : H⌃ ! H⌃. Hence the partition can be evaluated as

Z(M) = h M2 |Uf | M1i. (1.17)

When the boundary is a sphere, i.e., ⌃ = S

2, the Hilbert space HS2 is one dimensional.

When the boundary ⌃ = T

2, which can be seen as the boundary of a solid torus T =

D ⇥ S

1, one can obtain a state in HT 2 by inserting a Wilson loop in the representation

R̂i around the non-contractible cycle in the solid torus,

| T,R̂
i

i = |R̂ii. (1.18)

The state without the Wilson loop is |0̂i, denoted as the vacuum state.

6



priately as follows

tr
⇣
⇢

T
A2

A1[A2

⌘n

=

Z nY

k=1

(
Y

~x

h
d'

(k)
0 (~x)d'(k)

� (~x)
iY

~x2B

�

h
'

(k)
0 (~x)� '

(k)
� (~x)

i

Y

~x2A1

�

h
'

(k)
0 (~x)� '

(k+1)
� (~x)

i Y

~x2A2

�

h
'

(k)
� (~x)� '

(k+1)
0 (~x)

i
⇢

h
{'(k)

0 (~x)}, {'(k)
� (~x)}

i)
.

(1.11)

As a comparison, it is noted that tr (⇢A1[A2)
n has the expression

tr
⇣
⇢A1[A2

⌘n

=

Z nY

k=1

(
Y

~x

h
d'

(k)
0 (~x)d'(k)

� (~x)
iY

~x2B

�

h
'

(k)
0 (~x)� '

(k)
� (~x)

i

Y

~x2A

�

h
'

(k)
0 (~x)� '

(k+1)
� (~x)

i
⇢

h
{'(k)

0 (~x)}, {'(k)
� (~x)}

i)
.

(1.12)

Once we obtain tr
⇣
⇢

T
A2

A1[A2

⌘n

, we can calculate the entanglement negativity based on

Eq.(1.6).

1.2 Chern-Simons theory and surgery

One may refer to the seminal paper [37] for details of the Chern-Simons theory. Here

we mainly review the properties of Chern-Simons theory that will be used in our study

of entanglement negativity. The Chern-Simons theory action with a gauge group G on a

three-manifold M is given by

SCS =
k

4⇡

Z

M

tr

✓
A ^ dA+

2

3
A ^ A ^ A

◆
, (1.13)

where ‘tr0 is the trace over the fundamental representation of the gauge group G, A is

the G-connection on a genetic three-manifold M , and k is the coupling constant, which

is quantized. Chern-Simons theory is a topological field theory in the sense that the

correlation functions do not depend on the metric of the manifold M . Since the Chern-

Simons theory action does not contain the metric, the partition function

Z(M) =

Z
[DA]eiSCS(A)

, (1.14)

can define a topological invariant of the manifold M . Besides the partition function as

an invariant of three-manifolds, links and knots inside three-manifolds can also be seen

5

1. CS theory

connection of a gauge groupManifold

coupling constant (quantized)

2. Partition function

priately as follows

tr
⇣
⇢

T
A2

A1[A2

⌘n

=

Z nY

k=1

(
Y

~x

h
d'

(k)
0 (~x)d'(k)

� (~x)
iY

~x2B

�

h
'

(k)
0 (~x)� '

(k)
� (~x)

i

Y

~x2A1

�

h
'

(k)
0 (~x)� '

(k+1)
� (~x)

i Y

~x2A2

�

h
'

(k)
� (~x)� '

(k+1)
0 (~x)

i
⇢

h
{'(k)

0 (~x)}, {'(k)
� (~x)}

i)
.

(1.11)

As a comparison, it is noted that tr (⇢A1[A2)
n has the expression

tr
⇣
⇢A1[A2

⌘n

=

Z nY

k=1

(
Y

~x

h
d'

(k)
0 (~x)d'(k)

� (~x)
iY

~x2B

�

h
'

(k)
0 (~x)� '

(k)
� (~x)

i

Y

~x2A

�

h
'

(k)
0 (~x)� '

(k+1)
� (~x)

i
⇢

h
{'(k)

0 (~x)}, {'(k)
� (~x)}

i)
.

(1.12)

Once we obtain tr
⇣
⇢

T
A2

A1[A2

⌘n

, we can calculate the entanglement negativity based on

Eq.(1.6).

1.2 Chern-Simons theory and surgery

One may refer to the seminal paper [37] for details of the Chern-Simons theory. Here

we mainly review the properties of Chern-Simons theory that will be used in our study

of entanglement negativity. The Chern-Simons theory action with a gauge group G on a

three-manifold M is given by

SCS =
k

4⇡

Z

M

tr

✓
A ^ dA+

2

3
A ^ A ^ A

◆
, (1.13)

where ‘tr0 is the trace over the fundamental representation of the gauge group G, A is

the G-connection on a genetic three-manifold M , and k is the coupling constant, which

is quantized. Chern-Simons theory is a topological field theory in the sense that the

correlation functions do not depend on the metric of the manifold M . Since the Chern-

Simons theory action does not contain the metric, the partition function

Z(M) =

Z
[DA]eiSCS(A)

, (1.14)

can define a topological invariant of the manifold M . Besides the partition function as

an invariant of three-manifolds, links and knots inside three-manifolds can also be seen

5

3. Wilson lines (links and knots)

Chern-Simons Theory

as topological invariants in the Chern-Simons theory. Such a link or a knot in three-

manifolds can be defined as the “Wilson line”, that traces the holonomy of the gauge

connection on an oriented closed curve C in a given irreducible representation R̂ of G,

W

C
R(A) = trRP exp

Z

C
A. (1.15)

We can compute the correlation functions of non-intersecting links/knots Ci, i = 1, · · · , N ,

with a representation R̂i to each Ci on a three-manifold M ,

Z(M, R̂1, · · · , R̂N) = hW C1
R̂1

· · ·W C
N

R̂
N

i =
Z
[DA]

 
NY

i=1

W

C
i

R̂
i

!
eiSCS

. (1.16)

These links/knots correlation functions can be seen as the partition functions of a Chern-

Simons theory on a three-manifold M in the presence of Wilson loops. As shown by

Witten [37], the the partition functions are exactly calculable by canonical quantization

and surgery.

The key ingredient of computing the partition function is doing canonical quantiza-

tion of a Chern-Simons theory on a three-manifold M with boundary given by a Riemann

surface ⌃. This canonical quantization will produce a Hilbert space H⌃ with an associ-

ated state | Mi. The dual Hilbert space H⇤
⌃ with an associated state h M | state can be

obtained by reversing the orientation of the ⌃. The partition function of a Chern-Simons

theory on a (closed) three-manifold can be computed by performing the Heegaard split-

ting, which decomposes the three-manifold as the connected sum of two three-manifolds

M1 and M2 with common boundary ⌃. The original three-manifold M = M1

S
f M2

is obtained by gluing M1 and M2 through their boundary under the homeomorphism

f : ⌃ ! ⌃. This homeomorphism acting in the Hilbert space can be presented by an

operator Uf : H⌃ ! H⌃. Hence the partition can be evaluated as

Z(M) = h M2 |Uf | M1i. (1.17)

When the boundary is a sphere, i.e., ⌃ = S

2, the Hilbert space HS2 is one dimensional.

When the boundary ⌃ = T

2, which can be seen as the boundary of a solid torus T =

D ⇥ S

1, one can obtain a state in HT 2 by inserting a Wilson loop in the representation

R̂i around the non-contractible cycle in the solid torus,

| T,R̂
i

i = |R̂ii. (1.18)

The state without the Wilson loop is |0̂i, denoted as the vacuum state.
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ting, which decomposes the three-manifold as the connected sum of two three-manifolds

M1 and M2 with common boundary ⌃. The original three-manifold M = M1

S
f M2

is obtained by gluing M1 and M2 through their boundary under the homeomorphism

f : ⌃ ! ⌃. This homeomorphism acting in the Hilbert space can be presented by an

operator Uf : H⌃ ! H⌃. Hence the partition can be evaluated as

Z(M) = h M2 |Uf | M1i. (1.17)

When the boundary is a sphere, i.e., ⌃ = S

2, the Hilbert space HS2 is one dimensional.

When the boundary ⌃ = T

2, which can be seen as the boundary of a solid torus T =

D ⇥ S

1, one can obtain a state in HT 2 by inserting a Wilson loop in the representation

R̂i around the non-contractible cycle in the solid torus,

| T,R̂
i

i = |R̂ii. (1.18)

The state without the Wilson loop is |0̂i, denoted as the vacuum state.
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2. The partition function in the presence of Wilson lines

The above results allow us to compute the partition function on three-manifolds in

the presence of Wilson loops. Let us start at S2 ⇥ S

1, which can be seen as gluing two

solid toruses T = D⇥S

1 with boundaries identified. I.e., S2 comes from gluing two discs

together along their boundary S

1. The partition function of a Chern-Simons theory in

this three-manifold is

Z(S2 ⇥ S

1) = h0̂|0̂i = 1. (1.19)

While performing modular transformation S: ⌧ ! � 1
⌧
on the second solid torus and

glue it back, i.e., the non-contractible cycle of the first solid torus is homologous to the

contractible cycle of the second solid torus, we get S

3. We obtain the Chern-Simons

partition function

Z(S3) = h0̂|S|0̂i = S00, (1.20)

where Sij is the element of the modular S matrix. If there is a Wilson loop in the

representation R̂i in one solid torus, the Chern-Simons partition functions become

Z(S2 ⇥ S

1
, R̂i) = h0̂|R̂ii = �0,i.

Z(S3
, R̂i) = h0̂|S|R̂ii = S0i. (1.21)

One can also consider a Wilson loop in the representation R̂i in a solid torus, which

is glued to another solid torus with a Wilson loop in the representation R̂j. The Chern-

Simons partition functions are

Z(S2 ⇥ S

1
, R̂i, R̂j) = hR̂i|R̂ji = �i,j.

Z(S3
, R̂i, R̂j) = hR̂i|S|R̂ji = Sij. (1.22)

Here we list two main properties of the above results:

1. The normalized vacuum expectation values of disjointed Wilson loops can be fac-

torized, i.e.,

Z(M, R̂1, · · · , R̂N)

Z(S3)
=

NY

i=1

Z(Mi, R̂i)

Z(S3)
, (1.23)

where the three-manifold M is the connected sum of N three-manifolds Mi joined

along N � 1 two spheres S2. This result comes from the fact that the Hilbert space

for S2 is one dimensional.
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3. Factorability
M1 M2 M1 M2S3

Ri Ri Ri Ri

Ri
× ×=

Figure 1: The surgery procedure to relate the partition function on a manifold M1 �M2

with the partition functions on M1 and M2.

2. If Wilson loops are linked or they are passing through the common boundary S

2

between Mi and Mj, the factorability of the partition function is hold when the

Hilbert space for S2 with a pair of charges in the dual representations R̂i and R̂i is

one dimensional. We have

Z

�
M,L(R̂i, R̂j, R̂k)

� · Z(S3
, R̂j) = Z

�
M1, L(R̂i, R̂j)

� · Z�M2, L(R̂j, R̂k)
�
,

Z(M, R̂i, R̂i) · Z(S3
, R̂i) = Z(M1, R̂i) · Z(M2, R̂i). (1.24)

A surgery procedure we will frequently use in this work is shown in Fig. 1, where we

relate the partition function on a manifold M1 �M2 with the partition functions on M1

and M2, by a factor Z(S3
, R̂i) = S0i.

In addition, the modular S-matrix, which is unitary, is related with the quantum

dimension as follows

da =
S0a

S00
. (1.25)

The unitary condition for S-matrix implies that

(S00)
�1 =

sX

i

|di|2 =: D. (1.26)

2 Topological entanglement negativity

Based on the above discussions, we study the spatial topological entanglement negativity

between two subregions on various manifolds in this section. The entanglement negativity

is calculated in the following steps. (1) We consider tr
�
⇢

T2
A1[A2

�n
e

as the partition function

8
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Now let us compute the entanglement negativity in 
various cases

Ex1
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Figure 2: (a) Wavefunctional | i. A Wilson line in representation R̂a threads through

the AB interface. Shading implies a three-ball. (b) ⇢A[B = | ih |. (c) ⇢TB

A[B, in which

we do partial transpostition over B, i.e., we switch B with B

0.

on a three-manifold M . (2) We use surgery method to compute tr
�
⇢

T2
A1[A2

�n
e

, and then

take ne ! 1.

To avoid confusions, a spatial manifold is a two-manifold, which can be viewed as the

boundary of the three dimensional spacetime manifold where the wavefunction is defined.

2.1 Bipartition of a sphere

In this part, for the pedagogical purpose, we consider the simplest case, in which the spa-

tial manifold is a two-sphere S2. We consider the general case that there is a quasiparticle

ā (a) in the subsystem A (B), where ā is the anti-quasiparticle of a, i.e., a⇥ ā = I + · · · ,
with I being the identity operator. A Wilson line in the representation R̂a connects the

quasiparticles ā and a at the two ends, , as shown in Fig. 2 (a). For the case without

quasiparticles, we can simply set ā = a = I at the end.

Fig. 2 (a) represents the wavefunctional | i, which is defined on a three-ball. It is noted

that the Wilson line in representation R̂a is inside the solid ball. For the density matrix

⇢ = | ih |, we simply need to consider one more 3-ball with two conjugate punctures,

which represents h |, as shown in Fig. 2 (b). To study the topological entanglement

negativity between A and B, we need to consider the partially transposed density matrix

⇢

T
B (or ⇢TA). Pictorially, this can be operated by switching the submanifold B and B

0 as

shown in Fig.2 (c). Similar graphic representations of ⇢TB were also used in the tensor

network study of the entanglement negativity [14].
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quasiparticles ā and a at the two ends, , as shown in Fig. 2 (a). For the case without

quasiparticles, we can simply set ā = a = I at the end.
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…

Next, to calculate the entanglement negativity between A and B, we will use the

replica trick [see Eq. (1.6)]. tr
�
⇢

T
B

�n
can be calculated as follows. First, we make n

copies of ⇢TB , with each copy represented in Fig. 2 (c). Next, we glue the subregion A

0

(B) in the i-th copy with the subregion A (B0) in the (i + 1)-th (mod N) copy, then we

obtain tr
�
⇢

T
B

�n
. It is emphasized that tr

�
⇢

T
B

�n
depends on whether n is odd or even.

For odd n, i.e., n = no, the manifold after gluing is a S

3. On the other hand, for even n,

i.e., n = ne, the manifold after gluing are two independent S3. Therefore, tr
�
⇢

T
B

�n
after

the normalization has the following expressions

tr
�
⇢

T
B

�n
o

(tr⇢TB)no

=
Z(S3

, R̂a)

Z(S3
, R̂a)no

= Z(S3
, R̂a)

1�n
o = (S0a)

1�n
o

,

(2.27)

and

tr
�
⇢

T
B

�n
e

(tr⇢TB)ne

=
Z(S3

, R̂a)2

Z(S3
, R̂a)ne

= Z(S3
, R̂a)

2�n
e = (S0a)

2�n
e

,

(2.28)

where we have considered the fact that tr
�
⇢

T
B

�
= Z(S3

, R̂a) = S0a. Then, according to

the definition in Eq.(1.6), one can obtain the entanglement negativity as follows

EAB = lim
n
e

!1
ln

tr
�
⇢

T
B

�n
e

(tr⇢TB)ne

= lnS0a = ln da � lnD. (2.29)

For the case without any quasiparticles on the sphere, one simply sets da = dI = 1, and

therefore

EAB = � lnD. (2.30)

As a comparison, for odd n, one will obtain the trivial result, i.e., limn
o

!1 ln
tr(⇢TB)

n

o

(tr⇢TB)
n

o

= 0.

It is noted that EAB in Eqs.(2.29) and (2.30) are the same as the topological entanglement

entropy. This is because for a general pure state, the entanglement negativity for a

bipartite system is equal to the 1/2 Renyi entropy, EAB = S

(1/2)
A = S

(1/2)
B . It is known

that for the case in Fig. 2 (a), one has S(n)
A = S

(n)
B = ln da � lnD for arbitrary n.

Here we demonstrate the simplest case of computing the entanglement negativity by

the surgery method. As will be shown later, this basic operation provides a building block

for the study of more complicated cases.

2.2 Tripartition of a sphere

In this section, we study the entanglement negativity between A1 and A2 for a tripartite

spatial manifold S

2, where the sphere is divided into A1, A2 and B. In particular, we are

mainly interested in two cases: (1) A1 and A2 are adjacent, as shown in Fig. 3 (a), and

(2) A1 and A2 are disjoint, as shown in Fig.4 (a).
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with I being the identity operator. A Wilson line in the representation R̂a connects the
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with I being the identity operator. A Wilson line in the representation R̂a connects the

quasiparticles ā and a at the two ends, , as shown in Fig. 2 (a). For the case without

quasiparticles, we can simply set ā = a = I at the end.
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�
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B
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�
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�
⇢

T
B

�n
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(tr⇢TB)no

=
Z(S3

, R̂a)

Z(S3
, R̂a)no

= Z(S3
, R̂a)

1�n
o = (S0a)

1�n
o

,

(2.27)

and

tr
�
⇢

T
B

�n
e
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=
Z(S3
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2�n
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2�n
e
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(2.28)
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⇢
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�
= Z(S3

, R̂a) = S0a. Then, according to
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�
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For convenience, we deform the three-dimensional spacetime manifold in Fig.3 (a),

without changing the topology, to two three-balls connected by a tube, as shown in Fig.3

(b). Then the reduced density matrix ⇢A1[A2 can be obtained by tracing over the B part,

as shown in Fig.3 (c). Based on ⇢A1[A2 , one can easily obtain ⇢

T
A2

A1[A2
by switching A2 and

A

0
2, as shown in Fig.3 (d). One can find that the operation of partial transposition here

is the same as that in Fig. 2.

Now we are ready to calculate tr
⇣
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T
A2

A1[A2

⌘n

as follows. We make n copies of ⇢
T
A2
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,
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2) in the (i+1)-th (mod N) copy.

Similar with the case of a bipartited sphere, the result depends on whether n is odd or

even as follows.

For odd n, i.e., n = no, the resulting manifold is two S

3 connected by no tubes. Each

tube is contributed by the one that connects A0
1 and A

0
1 in Fig. 3 (d). Then, by using the
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surgery procedure in Fig. 1, we cut all the tubes that connect the two S
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For even n, i.e., n = ne, the resulting manifold is three S
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Then the entanglement negativity between A1 and A2 can be expressed as

EA1A2 = lim
n
e

!1
ln

tr
�
⇢

T
B

�n
e

(tr⇢TB)ne

= lnS0a = ln da � lnD, (2.33)

which is the same as Eq. (2.29). In other words, for a tripartited S

2 as shown in Fig. 3,

the existence of region B does not a↵ect the entanglement negativity between A1 and A2,

i.e.,

EA1A2(B 6= ;) = EA1A2(B = ;). (2.34)
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Figure 4: (a) Wavefunctional | i. A Wilson line in representation R̂a threads through

the interface A1B and A2B. A1 and A2 are disjoint. (b) A three-manifold which is

topologically equivalent to (a). (c) ⇢A1[A2 = trB| ih |, and (d) ⇢

T
A2

A1[A2
, in which we

switch region A2 and A

0
2 in (c).

one can cut all the tubes that connect the two S

3, with each tube contributing a factor

Z(S3
, R̂a). Then one can obtain

tr
⇣
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T
A2

A1[A2
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, (2.35)

for both n = no and n = ne. Therefore, one can obtain the entanglement negativity

between A1 and A2 as follows

EA1A2 = lim
n
e

!1
ln

tr
�
⇢

T
B

�n
e

(tr⇢TB)ne

= ln (S0a)
0 = 0. (2.36)

I.e., there is no entanglement negativity between A1 and A2 in this case. It is noted that

the topological mutual information between A1 and A2 for this case is also zero [see Eq.

(4.70)].

2.3 Two adjacent non-contractible regions on a torus with non-

contractible B

Here, we focus on the spatial manifold of a torus, T 2. For the simplest case of a bipartite

torus, one can refer to the Appendix A, where the operation is straightforward and helpful
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(tr⇢TB)ne

= ln (S0a)
0 = 0. (2.36)

I.e., there is no entanglement negativity between A1 and A2 in this case. It is noted that

the topological mutual information between A1 and A2 for this case is also zero [see Eq.

(4.70)].

2.3 Two adjacent non-contractible regions on a torus with non-

contractible B

Here, we focus on the spatial manifold of a torus, T 2. For the simplest case of a bipartite

torus, one can refer to the Appendix A, where the operation is straightforward and helpful
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No entanglement if A1 and A2 do not have interfaces!



More cases
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Figure 6: (a) Wavefunctional | i. The toroidal space is divided into threes parts A1, A2

and B, where we have a two-component A1A2 interface. The red solid line represents a

Wilson loop which can fluctuate among di↵erent representations. (b) A three-manifold

with four 3-balls joined by four tubes appropriately, which is equivalent to the configura-

tion in (a) in topology. (c) ⇢A1[A2 = trB| ih |, and (d) ⇢
T
A2

A1[A2
, in which we do partial

transposition over A2, i.e., we switch A2 with A

0
2 in (c).

Z(S3
, R̂a). Therefore, one can obtain

tr
⇣
⇢

T
A2

A1[A2

⌘n
o

⇣
tr⇢

T
A2

A1[A2

⌘n
o

=
1

Z(S2 ⇥ S

1
, R̂a, R̂a)no

· Z(S3
, R̂a)4

Z(S3
, R̂a)4no

= Z(S3
, R̂a)

4�4n
o = (S0a)

4�4n
o

.

(2.43)

On the other hand, for even n, i.e., n = ne, the resulting manifold is six S

3 connected by

3ne tubes, where the extra two S

3 is caused by the partial transposition. Similar with the

case of n = no, the 4ne tubes are contributed by the ones connecting A2 � A2, A0
1 � A

0
1,
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Figure 8: (a) The reduced density matrix ⇢A1[A2 , which is obtained based on the wave-

functional in Fig.7 (c). (b) The partially transposed reduced density matrix ⇢

T
A2

A1[A2
, which

is obtained by switching A2 and A

0
2 in (a).

after gluing, two S

3 are contributed by the 3-balls in the first and fourth rows in Fig. 8

(d). It is noted that there is no Wilson line threading through these two S

3, and therefore

each of them contributes Z(S3) after the surgery. The other two S

3 are contributed by

the 3-balls in the second and third rows. Since there are Wilson lines threading through

these two S

3, each of them contributes Z(S3
, R̂a) after the surgery.

For the 4no tubes, 2no tubes are contributed by the ones that connect the first (third)

and second (fourth) rows of 3-balls. There are no Wilson lines threading through these

2no tubes. Therefore, after the surgery procedure in Fig. 1, each of these tubes contributes

Z(S3). The other 2no tubes are contributed by the tubes that connect A1�A1 (A0
1�A

0
1)

in the second row, and the ones that connect A0
2�A

0
2 (A2�A2) in the third row. For these

2no tubes, since there are Wilson lines threading through them, each tube contributes a

factor Z(S3
, R̂a) after the surgery.
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Figure 7: (a) Wavefunctional | i. The toroidal space is divided into threes parts A1,

A2 and B, where we have a two-component A1A2 interface and a contractible region

B. The red solid line represents a Wilson loop which can fluctuate among di↵erent

representations. (b) A three-manifold with four 3-balls joined by four tubes appropriately,

which is equivalent to the configuration in (a) in topology. The configuration in (b) can

be further deformed into the configuration in (c), without changing topology.

7 (b), where there are four S

3 connected by four tubes, which can be further deformed

into the three-manifold in Fig. 7 (c). Then it is straightforward to obtain the reduced

density matrix ⇢A1A2 by tracing out the B part, as shown in Fig. 8 (a). To obtain the

partially transposed reduced density matrix ⇢

T
A2

A1[A2
, we simply need to switch A2 with A

0
2

in ⇢A1[A2 , as shown in Fig. 8 (b).

As before, for simplicity, we first consider the case in which the Wilson loop is in a

definite representation R̂a. To obtain tr
⇣
⇢

T
A2

A1[A2

⌘n

, we make n copies of ⇢
T
A2

A1[A2
in Fig.8

(b). Then we glue the region A

0
1(A2) in the i-th copy with the region A1(A0

2) in the

(i + 1)-th (mod N) copy, and obtain tr
⇣
⇢

T
A2

A1[A2

⌘n

. Since the configuration in Fig. 8 (b)

is already very complicated, it is helpful for the readers to understand the gluing based

on the case of a bipartite torus [see Fig. 10 (c)], considering that the limit B ! ; in Fig.

7 (a) corresponds to a bipartite torus.

The gluing result depends on whether n is odd or even as follows. For odd n, i.e.,

n = no, the resulting manifold is four S

3 connected by 4no tubes. One should be very

careful here. For convenience, we label the four rows of 3-balls in Fig. 8 (d) as the first,

second, third and fourth rows of 3-balls from top to bottom. In the resulting manifold
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Figure 9: (a) Wavefunctional | i. The toroidal space is divided into threes parts A1,

A2 and B, where A1 and A2 are disjoint. (b) The configuration in (a) is topologically

equivalent to four 3-balls joined by four tubes appropriately. (c) ⇢A1[A2 by tracing out part

B. (d) Partially transposed reduced density matrix ⇢T2
A1[A2

where the partial transposition

is over degrees of freedom in A2, i.e., we switch A2 with A

0
2 in ⇢A1[A2 in (c).

By imposing the normalization condition
P

j | j|2 = 1, EA1A2 can be simplified as

EA1A2 = 2 ln

 
X

j

| j|S0j

!
= 2 ln

 
X

j

| j|dj
!

� 2 lnD. (2.54)

The result is the same as Eq. (4.64) for a bipartite torus, i.e., EA1A2(B 6= ;) = EA1A2(B =

;) for the configuration in Fig. 7 (a). For this case, the entanglement negativity between

A1 and A2 depends on the choice of ground state for both Abelian and non-Abelian

Chern-Simons theories.

2.5 Two disjoint non-contractible regions on a torus

Finally, we demonstrate the vanishing entanglement negativity for two disjoint non-

contractible regions A1 and A2 on a spatial manifold T

2, as shown in Fig. 9 (a), in which

the regions A1 and A2 are separated by non-contractible regions B. The configuration in
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• Entanglement negativity for free fermion—hard to 
compute

• Entanglement negativity for Conformal field 
theory—can measure the entanglement spread  
under quantum quenches

• Entanglement negativity for Chern-Simon theories  
can relate to geometry and topology



Conclusion and future directions:

• Entanglement negativity is a very useful tool and links 
to dynamics, topology and geometry. 

• Generalization for higher dimensions? 

• Generalization other topological field theories? 

• What is the holographic picture for entanglement 
negativity?? 

• Evolution of of the entanglement negativity for other 
quenches?


