# Entanglement Negativity in many-body physics 

QMath13: Mathematical Results in Quantum Physics
(New mathematical topics arising in current theoretical physics)
Po-Yao Chang, 10/10/2016

## Motivation

- How to measure many-body entanglement?



## Motivation

- How to measure many-body entanglement?


$$
\rho=|\Psi\rangle\langle\Psi|
$$

The bipartite entanglement measures the entanglement between $A$ and $B$, which is the complementary part of $A$ )
Entanglement entropy

$$
S_{A}=-\operatorname{Tr} \rho_{A} \ln \rho_{A}=S_{B}
$$

$$
\rho=|\Psi\rangle\langle\Psi|
$$

The bipartite entanglement measures the entanglement between $A$ and $B$, which is the complementary part of $A$ )

## Entanglement entropy

$$
S_{A}=-\operatorname{Tr} \rho_{A} \ln \rho_{A}=S_{B}
$$

What is the entanglement between
AI and A2?

## Entanglement negativity

[Peres, 1996,...]

## My plan for today

- Entanglement negativity for free fermion-hard to compute [PYC, X. Wen, 16]
- Entanglement negativity for Conformal field theory-can measure the entanglement spread under quantum quenches $\qquad$ Joint
[X. Wen, PYC, S. Ryu, 15]

- Entanglement negativity for Chern-Simon theories can relate to geometry and topology
[X. Wen, PYC, S. Ryu,16]


## Entanglement negativity

$$
\begin{array}{cc}
\rho_{A}=\rho_{A_{1} \cup A_{2}} & \text { a mixed state } \\
\text { (after tracing out B) }
\end{array}
$$

Partial transpose:

$\left|\phi_{A_{\alpha} i}\right\rangle$ basis of $\mathcal{H}_{A_{\alpha}}$
Entanglement negativity:

$$
\mathcal{E}:=\ln \operatorname{Tr}\left|\rho_{A}^{T_{A_{2}}}\right| \quad \operatorname{Tr}\left|\rho_{A}^{T_{A_{2}}}\right|=\sum_{i}\left|\lambda_{i}\right|=1-2 \sum_{\lambda_{i}<0} \lambda_{i}
$$

measuring the negative eigenvalues of $\rho_{A}^{T_{A}}$
e.g., A entangled state $\quad|\Psi\rangle=\frac{1}{\sqrt{2}}(|10\rangle+|01\rangle)$
$\left.\rho=|\Psi\rangle\langle\Psi|=\left[\begin{array}{cccc}\left|1_{A} O_{B}\right\rangle & \left|0_{A} I_{B}\right\rangle\left|0_{A} O_{B}\right\rangle\left|1_{A} 1_{B}\right\rangle \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad \begin{array}{l}\end{array}\right] \quad \rho^{T}=\left[\begin{array}{cccc}\frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0\end{array}\right]$
$\lambda_{i}=\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\}$
$\mathcal{E}=\ln \operatorname{Tr}\left|\rho^{T}\right|=\ln 2 \quad$ capture the entanglement!

Entanglement negativity for free fermions [PYC, XW 2016]
A pure state (a bipartite system)

$$
|\Psi\rangle=\prod_{i=1}^{N}\left(\sqrt{P_{i}} d_{A i}^{\dagger}+\sqrt{1-P_{i}} d_{B i}^{\dagger}\right)|0\rangle
$$

## Entanglement negativity for free fermions

[PYC, XW 2016]

## A pure state (a bipartite system)

$$
\begin{aligned}
& \rho=\bigotimes_{i}\left(\begin{array}{c}
{ }^{\left|A_{A} 0_{B}\right\rangle} \\
\sqrt{P_{i}\left(1-P_{i}\right)} \\
\sqrt{\left|{ }^{\mid} A_{1} B_{B}\right\rangle} \\
\sqrt{P_{i}\left(1-P_{i}\right)} \\
1-P_{i}
\end{array}\right) \\
& |10\rangle\langle 01| \rightarrow|11\rangle\langle 00| \\
& \begin{aligned}
\rho^{T_{B}} & =\bigotimes_{i} \rho_{i}^{T_{B}} \\
& =\bigotimes_{i}\left(\begin{array}{cccc}
\left.P_{A} 0_{B}\right\rangle & \left|0_{A} 1_{B}\right\rangle & \left|0_{A} 0_{B}\right\rangle & \left|1_{A} 1_{B}\right\rangle \\
0 & 1-P_{i} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{P_{i}\left(1-P_{i}\right)} & \sqrt{P_{i}\left(1-P_{i}\right)} \\
& 0
\end{array}\right)
\end{aligned}
\end{aligned}
$$

## Entanglement negativity for free fermions

[PYC, XW 2016]
A pure state (a bipartite system)

$$
|\Psi\rangle=\prod_{i=1}^{N}\left(\sqrt{P_{i}} d_{A i}^{\dagger}+\sqrt{1-P_{i}} d_{B i}^{\dagger}\right)|0\rangle \underbrace{\text { A }}_{P_{1}}
$$

$$
\rho=\bigotimes_{i}\left(\begin{array}{cc}
\left|1_{A} O_{B}\right\rangle & \left|0_{A} 1_{B}\right\rangle \\
\sqrt{P_{i}\left(1-P_{i}\right)} & \sqrt{P_{i}\left(1-P_{i}\right)} \\
1-P_{i}
\end{array}\right)
$$

Entanglement negativity

$$
|10\rangle\langle 01| \rightarrow|11\rangle\langle 00|
$$

$$
\begin{aligned}
\rho^{T_{B}} & =\bigotimes_{i} \rho_{i}^{T_{B}} \\
& =\bigotimes_{i}\left(\begin{array}{cccc}
\left.P_{i} 0_{B}\right\rangle & \left|0_{A} 1_{B}\right\rangle & \left|0_{A} 0_{B}\right\rangle & \left|1_{A} 1_{B}\right\rangle \\
0 & 1-P_{i} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{P_{i}\left(1-P_{i}\right)} & \sqrt{P_{i}\left(1-P_{i}\right)} \\
& =
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{E} & =\ln \operatorname{Tr}\left|\rho^{T_{B}}\right|=\ln \prod_{i} \sum_{\alpha}\left(\left|\Xi_{i, \alpha}\right|\right) \\
& =\sum_{i} \ln \left(1+2 \sqrt{P_{i}\left(1-P_{i}\right)}\right) .
\end{aligned}
$$

## Mixed states (a tripartite system)

The ground state may not be factored

$$
|\Psi\rangle=\prod_{i=1}^{N}\left(\sqrt{P_{i}} \frac{\left.\sum_{k} V_{i k}\left(\sqrt{Q_{k}} d_{A_{1} k}^{\dagger}+\sqrt{1-Q_{k}} d_{A_{2} k}^{\dagger}\right)+\sqrt{1-P_{i}} d_{B i}^{\dagger}\right)|0\rangle}{d_{A i}^{\dagger}}\right.
$$

## Mixed states (a tripartite system)

The ground state may not be factored

$$
\begin{gathered}
|\Psi\rangle=\prod_{i=1}^{N}\left(\sqrt{P_{i}} \sum_{k} V_{i k}\left(\sqrt{Q_{k}} d_{A_{1} k}^{\dagger}+\sqrt{1-Q_{k}} d_{A_{2} k}^{\dagger}\right)+\sqrt{1-P_{i}} d_{B i}^{\dagger}\right)|0\rangle \\
d_{A i}^{\dagger}
\end{gathered}
$$

$\rho_{A}=\sum_{n=0}^{N} D_{n}\left|n_{A}\right\rangle\left\langle n_{A}\right|$

$$
\begin{aligned}
& \quad V_{\{i i,\{k\}}^{\operatorname{minor}}:=\text { picking } i_{1}, i_{2}, \cdots, i_{n} \text {-th rows } \\
& \text { and } k_{1}, k_{2}, \cdots, k_{n} \text {-th columns of } V \text {. }
\end{aligned}
$$

$$
\begin{aligned}
D_{n}\left|n_{A}\right\rangle\left\langle n_{A}\right|= & \sum_{i_{1}>i_{2}>\cdots>i_{n}} P_{i_{1}} P_{i_{2}} \cdots P_{i_{n}} \prod_{\alpha \neq i_{1}, i_{2}, \cdots, i_{n}}\left(1-P_{\alpha} \sum_{k_{1}>k_{2}>\cdots>k_{n} k_{1}^{\prime}>k_{2}^{\prime}>\cdots>k_{n}^{\prime}} \operatorname{Det}\left[V_{\{i\},\{k\}}^{\operatorname{minor}}\right] \operatorname{Det}\left[V_{\{i\},\left\{k^{\prime}\right\}}^{\operatorname{minor}}\right]\right. \\
& \times\left(\sqrt{Q_{k_{1}}} d_{A_{1} k_{1}}^{\dagger}+\sqrt{1-Q_{k_{1}}} d_{A_{2} k_{1}}^{\dagger}\right) \cdots\left(\sqrt{Q_{k_{n}}} d_{A_{1} k_{n}}^{\dagger}+\sqrt{1-Q_{k_{n}}} d_{A_{2} k_{n}}^{\dagger}\right)|0\rangle \\
& \times\langle 0|\left(\sqrt{Q_{k_{1}^{\prime}}} d_{A_{1} k_{1}^{\prime}}+\sqrt{1-Q_{k_{1}^{\prime}}} d_{A_{2} k_{1}^{\prime}}\right) \cdots\left(\sqrt{Q_{k_{n}^{\prime}}} d_{A_{1} k_{n}^{\prime}}+\sqrt{1-Q_{k_{n}^{\prime}}} d_{A_{2} k_{n}^{\prime}}\right)
\end{aligned}
$$

## Mixed states (a tripartite system)

The ground state may not be factored


Entanglement negativity for free fermion-hard to compute

- Entanglement negativity for Conformal field theory-can measure the entanglement spread under quantum quenches
- Entanglement negativity for Chern-Simon theories can relate to geometry and topology


## Recent development of computing entanglement negativity for a many body state!!!

- A replica trick + QFT (can be CFT or CS)
[Calabrese, Cardy, Tonni, 12,13]
- Monte Carlo simulations [Wen, P.-Y., Chang, Ryu,15]
[Chung, Alba, Bonnes, Chen, Lauchli,13]
- Tensor network (MPS)
[Calabrese, Tagliacozzo, Tonni,13]
- An overlap matrix method (free fermions)
[P.-Y., Chang, Wen,16]
- Representation theory (Valance bond solids)
[Santos, Korepin,16]
- A surgery method
[Wen, P.-Y., Chang, Ryu,16]


## A path integral representation and a replica trick

1. Density matrix

$$
\begin{aligned}
\rho\left[\left\{\varphi_{0}(\vec{x})\right\},\left\{\varphi_{\beta}(\vec{x})\right\}\right] & =\frac{1}{Z(\beta)}\left\langle\left\{\varphi_{0}(\vec{x})\right\}\right| e^{-\beta H}\left|\left\{\varphi_{\beta}(\vec{x})\right\}\right\rangle \\
& =\int \prod[d \phi(\vec{x}, \tau)] e^{-S_{E}} \prod_{\vec{x}} \delta\left[\phi(\vec{x}, 0)-\varphi_{0}(\vec{x})\right] \delta\left[\phi(\vec{x}, \beta)-\varphi_{\beta}(\vec{x})\right]
\end{aligned}
$$




## 2. Partially transposed density matrix

$$
\begin{aligned}
& \rho^{T_{B}}\left[\left\{\varphi_{0}(\vec{x})\right\},\left\{\varphi_{\beta}(\vec{x})\right\}\right]=\int \prod_{\vec{x}, \tau}[d \phi(\vec{x}, \tau)] e^{-S_{E}} \prod_{\vec{x} \notin B} \delta\left[\phi(\vec{x}, 0)-\varphi_{0}(\vec{x})\right] \delta\left[\phi(\vec{x}, \beta)-\varphi_{\beta}(\vec{x})\right] \\
& \prod_{\vec{x} \in B} \delta\left[\phi(\vec{x}, 0)-\varphi_{\beta}(\vec{x})\right] \delta\left[\phi(\vec{x}, \beta)-\varphi_{0}(\vec{x})\right] .
\end{aligned}
$$

2. Partially transposed density matrix

$$
\begin{aligned}
& \rho^{T_{B}}\left[\left\{\varphi_{0}(\vec{x})\right\},\left\{\varphi_{\beta}(\vec{x})\right\}\right]=\int \prod_{\vec{x}, \tau}[d \phi(\vec{x}, \tau)] e^{-S_{E}} \prod_{\vec{x} \neq B} \delta\left[\phi(\vec{x}, 0)-\varphi_{0}(\vec{x}) \delta \delta \phi(\vec{x}, \beta)-\varphi_{\beta}(\vec{x})\right] \\
& \prod_{\vec{x} \in B} \delta\left[\phi(\vec{x}, 0)-\varphi_{\beta}(\vec{x})\right] \delta\left[\phi(\vec{x}, \beta)-\varphi_{0}(\vec{x})\right] .
\end{aligned}
$$

3. Reduced density matrix

$$
\begin{aligned}
& \rho_{A_{1} \cup A_{2}}\left[\left\{\varphi_{0}(\vec{x})\right\},\left\{\varphi_{\beta}(\vec{x})\right\} \mid \vec{x} \in A_{1} \cup A_{2}\right] \\
= & \int\left(\prod_{\vec{x} \in B}\left[d \varphi_{0}(\vec{x}) d \varphi_{\beta}(\vec{x})\right] \delta\left[\varphi_{0}(\vec{x})-\varphi_{\beta}(\vec{x})\right]\right) \rho\left[\left\{\varphi_{0}(\vec{x})\right\},\left\{\varphi_{\beta}(\vec{x})\right\}\right] . \\
& \rho_{A}=\frac{1}{Z}(\overline{\bar{A}}
\end{aligned}
$$

## 4. Partially transposed reduced density matrix

$$
\begin{aligned}
& \rho_{A_{A}\left[A_{2} A_{2}\right.}^{T_{2}}\left[\left\{\varphi_{0}(\vec{x})\right\},\left\{\varphi_{\beta}(\vec{x})\right\} \mid \vec{x} \in A_{1} \cup A_{2}\right] \\
& =\int\left(\prod_{\vec{x} \in B}\left[d \varphi_{0}(\vec{x}) d \varphi_{\beta}(\vec{x})\right] \delta\left[\varphi_{0}(\vec{x})-\varphi_{\beta}(\vec{x})\right]\right) \rho^{T_{A_{1}}}\left[\left\{\varphi_{0}(\vec{x})\right\},\left\{\varphi_{\beta}(\vec{x})\right\}\right] .
\end{aligned}
$$

Not easy to compute

$$
\rho_{A}^{T_{A_{2}}}=\frac{1}{Z}\left({ }_{\beta}^{0} \overline{\overline{A_{1}}}{ }_{0}^{\beta} \overline{\overline{A_{2}}}\right.
$$

4. Partially transposed reduced density matrix

$$
\begin{aligned}
& \rho_{A_{A_{1}}, A_{2}}^{T_{2}}\left[\left\{\varphi_{0}(\vec{x})\right\},\left\{\varphi_{\beta}(\vec{x})\right\} \mid \vec{x} \in A_{1} \cup A_{2}\right] \\
& =\int\left(\prod_{\vec{x} \in B}\left[d \varphi_{0}(\vec{x}) d \varphi_{\beta}(\vec{x})\right]\left[\varphi_{0}(\vec{x})-\varphi_{\beta}(\vec{x})\right]\right) \rho^{T_{A_{2}}}\left[\left\{\varphi_{0}(\vec{x})\right\},\left\{\varphi_{\beta}(\vec{x})\right\}\right] .
\end{aligned}
$$

Not easy to compute

$$
\rho_{A}^{T_{A_{2}}}=\frac{1}{Z}\left({ }_{\beta}^{0} \overline{\overline{A_{1}}}={ }_{0}^{\beta} \overline{\overline{A_{2}}}\right.
$$

5. Replica trick ( n copies)

$$
\begin{aligned}
\operatorname{tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n}= & \prod_{k=1}^{n}\left\{\prod_{\vec{x}}\left[d \varphi_{0}^{(k)}(\vec{x}) d \varphi_{\beta}^{(k)}(\vec{x})\right] \prod_{\vec{x} \in B} \delta\left[\varphi_{0}^{(k)}(\vec{x})-\varphi_{\beta}^{(k)}(\vec{x})\right]\right. \\
& \left.\prod_{\vec{x} \in A_{1}} \delta\left[\varphi_{0}^{(k)}(\vec{x})-\varphi_{\beta}^{(k+1)}(\vec{x})\right] \prod_{\vec{x} \in A_{2}} \delta\left[\varphi_{\beta}^{(k)}(\vec{x})-\varphi_{0}^{(k+1)}(\vec{x})\right] \rho_{0}\left[\left\{\varphi_{0}^{(k)}(\vec{x})\right\},\left\{\varphi_{\beta}^{(k)}(\vec{x})\right\}\right]\right\}
\end{aligned}
$$

e.g. $\quad \operatorname{tr}\left(\rho_{\mathrm{A}_{1} \cup \mathrm{~A}_{2}}^{\mathrm{T}_{\mathrm{A}_{2}}}\right)^{3}$

[Calabrese, Cardy, Tonni, 12]

$$
\operatorname{tr}\left(\rho_{\mathrm{A}_{1} \cup \mathrm{~A}_{2}}^{\mathrm{T}_{\mathrm{A}_{2}}}\right)^{3}=\frac{\mathcal{Z}_{3,2}}{\mathcal{Z}^{3}}
$$

Partition function on a n-sheeted Riemann surface

## A trick of computing the entanglement negativity

1. Trace norm

$$
\operatorname{tr}\left|\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right|=\sum_{i}\left|\lambda_{i}\right|=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|
$$

2. Momenta of the partially transposed reduced density matrix

$$
\begin{aligned}
\operatorname{tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n}=\sum_{i} \lambda_{i}^{n} & =\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}} \\
& =\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{o}}-\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{o}}
\end{aligned}
$$

## A trick of computing the entanglement negativity

1. Trace norm

$$
\operatorname{tr}\left|\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right|=\sum_{i}\left|\lambda_{i}\right|=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|
$$

2. Momenta of the partially transposed reduced density matrix

$$
\begin{aligned}
\operatorname{tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n}=\sum_{i} \lambda_{i}^{n} & =\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}} \\
& =\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{o}}-\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{o}}
\end{aligned}
$$

3. Entanglement negativity can be obtained by taking $n_{e} \rightarrow 1$

$$
\mathcal{E}_{A_{1} A_{2}}=\lim _{n_{e} \rightarrow 1} \ln \operatorname{tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n_{e}} \quad \frac{\mathcal{Z}_{n_{e}}}{\mathcal{Z}^{n_{e}}}
$$

## Entanglement negativity in quantum field theory

Partition function on a $n$-sheeted Riemann surface $\mathcal{R}_{n, N}$

$$
\begin{aligned}
\mathcal{Z}_{n, N}= & \int_{\mathcal{C}_{r}}\left[d \psi_{1} \cdots d \psi_{n}\right] \exp \left[-\int_{C} d z d \bar{z}\left(\mathcal{L}\left[\psi_{1}\right](z, \bar{z})+\cdots+\mathcal{L}\left[\psi_{n}\right](z, \bar{z})\right)\right] \\
& \text { restricted path } \rightarrow \text { Complex plane }
\end{aligned}
$$

$$
\psi_{i}\left(x, 0^{+}\right)=\psi_{i+1}\left(x, 0^{-}\right) \quad x \in A=\cup_{j=1}^{N} A_{j}, \quad j=1, \cdots, N
$$

Define branch-point twist fields

$$
\mathcal{T}_{n}:=\mathcal{T}_{\sigma}, \quad \sigma: i \rightarrow i+1 \quad \bmod \quad n
$$

$$
\overline{\mathcal{T}}_{n}:=\mathcal{T}_{\sigma}^{-1}, \quad \sigma: i \rightarrow i-1 \quad \bmod \quad n
$$



## Entanglement negativity in quantum field theory

Partition function on a $n$-sheeted Riemann surface $\mathcal{R}_{n, N}$

$$
\begin{aligned}
& \begin{array}{c}
\mathcal{Z}_{n, N}=\int_{\mathcal{C}_{r}}\left[d \psi_{1} \cdots d \psi_{n}\right] \exp \left[-\int_{C} d z d \bar{z}\left(\mathcal{L}\left[\psi_{1}\right](z, \bar{z})+\cdots+\mathcal{L}\left[\psi_{n}\right](z, \bar{z})\right)\right] \\
\\
\text { restricted path }
\end{array} \text { Complex plane } \\
& \psi_{i}\left(x, 0^{+}\right)=\psi_{i+1}\left(x, 0^{-}\right) \quad x \in A=\cup_{j=1}^{N} A_{j}, \quad j=1, \cdots, N \\
& \downarrow \text { Define branch-point twist fields } \\
& \mathcal{T}_{n}:=\mathcal{T}_{\sigma}, \quad \sigma: i \rightarrow i+1 \quad \bmod \quad n \\
& \overline{\mathcal{T}}_{n}:=\mathcal{T}_{\sigma}^{-1}, \quad \sigma: i \rightarrow i-1 \bmod n \\
& \text { Correlation function of twist fields on a complex plane } \\
& \mathcal{Z}_{n, N} \propto\left\langle\mathcal{T}_{n}\left(u_{1}, 0\right) \overline{\mathcal{T}}_{n}\left(v_{1}, 0\right) \cdots \mathcal{T}_{n}\left(u_{N}, 0\right) \overline{\mathcal{T}}_{n}\left(v_{N}, 0\right)\right\rangle
\end{aligned}
$$

## Entanglement negativity in quantum field theory Partial transposition

Gluing n copies of the above:

[Calabrese-Cardy-Tonni, 12]

## Entanglement negativity in quantum field theory Partial transposition

Gluing n copies of the above:

[Calabrese-Cardy-Tonni, 12]
Now we have enough ingredients!!! Let us compute the entanglement negativity!!

## Entanglement negativity after a local quench

[Wen, PYC and Ryu, 15]


## Entanglement negativity after a local quench

[Wen, PYC and Ryu, 15]


1. Two symmetric disjoint intervals


2. Two asymmetric disjoint intervals


Entanglement negativity for free fermion-hard to compute

Entanglement negativity for Conformal field theory-can measure the entanglement spread under quantum quenches

- Entanglement negativity for Chern-Simon theories can relate to geometry and topology

Motivation: The entanglement negativity for Chern-Simons theory is "topological". And it relates to modulo S-matrix, which can related to anyon braiding.
Physics realization: fractional quantum Hall systems

## Chern-Simons Theory

## coupling constant (quantized)

1. CS theory

$$
S_{\mathrm{CS}}=\frac{\overparen{k}}{4 \pi} \int_{(\mathbb{M})} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge(A)\right)
$$

Manifold
2. Partition function $Z(M)=\int[\mathcal{D} A] \mathrm{e}^{i S_{\mathrm{CS}}(A)}$
3. Wilson lines (links and knots) $\quad W_{R}^{\mathcal{C}}(A)=\operatorname{tr}_{R} P \exp \int_{\mathcal{C}} A$.
4. Correlators (partition function with links and knots)

$$
Z\left(M, \hat{R}_{1}, \cdots, \hat{R}_{N}\right)=\left\langle W_{\hat{R}_{1}}^{\mathcal{C}_{1}} \cdots W_{\hat{R}_{N}}^{\mathcal{C}_{N}}\right\rangle=\int[D A]\left(\prod_{i=1}^{N} W_{\hat{R}_{i}}^{c_{i}}\right) \mathrm{e}^{i S_{\mathrm{Ccs}}}
$$

## Chern-Simons Theory

coupling constant (quantized)

1. CStheory $\quad$ ( $k$ (.a ( 1
2. Par

## You don't need these

3. Wil
4. Correlators (partition function with links and knots)

$$
Z\left(M, \hat{R}_{1}, \cdots, \hat{R}_{N}\right)=\left\langle W_{\hat{R}_{1}}^{\mathcal{C}_{1}} \cdots W_{\hat{R}_{N}}^{c_{N}}\right\rangle=\int[\mathcal{D} A]\left(\prod_{i=1}^{N} W_{\hat{R}_{i}}^{c_{i}}\right) \mathrm{e}^{i S_{\mathrm{ccs}}}
$$

## Minimun ingredients

1. The partition function can be computed from the canonical quantization of a CS theory on a 3-manifold with boundary.


$$
Z(M)=\left\langle\Psi_{M_{2}}\right| U_{f}\left|\Psi_{M_{1}}\right\rangle
$$



## Minimun ingredients

1. The partition function can be computed from the canonical quantization of a CS theory on a 3-manifold with boundary.

2. The partition function in the presence of Wilson lines

$$
\begin{aligned}
& Z\left(S^{2} \times S^{1}, \hat{R}_{i}, \hat{R}_{j}\right)=\left\langle\hat{R}_{i} \mid \hat{R}_{j}\right\rangle=\delta_{i, j} \\
& Z\left(S^{3}, \hat{R}_{i}, \hat{R}_{j}\right)=\left\langle\hat{R}_{i}\right| S\left|\hat{R}_{j}\right\rangle=\mathcal{S}_{i j} .
\end{aligned}
$$

## Minimun ingredients

1. The partition function can be computed from the canonical quantization of a CS theory on a 3-manifold with boundary.

2. The partition function in the presence of Wilson lines

$$
\begin{aligned}
& Z\left(S^{2} \times S^{1}, \hat{R}_{i}, \hat{R}_{j}\right)=\left\langle\hat{R}_{i} \mid \hat{R}_{j}\right\rangle=\delta_{i, j} \\
& Z\left(S^{3}, \hat{R}_{i}, \hat{R}_{j}\right)=\left\langle\hat{R}_{i}\right| S\left|\hat{R}_{j}\right\rangle=\mathcal{S}_{i j} .
\end{aligned}
$$

3. Factorability


$$
Z\left(M,\left[\square_{1}, \varpi_{2}, \hat{R}_{i}, \hat{\bar{R}}_{i}\right] C\right) \cdot Z\left(S^{3}, \hat{R}_{i}\right)=Z\left(M_{1},\left[\square_{1}, \hat{R}_{i}\right] c_{1}\right) \cdot Z\left(M_{2},\left[\square_{2}, \hat{R}_{i}\right] C_{\mathcal{C}_{1}}\right)
$$

Now let us compute the entanglement negativity in various cases

Ex1

(a)
$|\Psi\rangle$

(b)
$\rho_{A \cup B}=|\Psi\rangle\langle\Psi|$

(C)
$\rho_{A \cup B}^{T_{B}}$

Now let us compute the entanglement negativity in various cases

Ex1


(c)
$\rho_{A \cup B}^{T_{B}}$
n-copies


$$
\begin{aligned}
& \frac{\operatorname{tr}\left(\rho^{T_{B}}\right)^{n_{o}}}{\left(\operatorname{tr} \rho^{T_{B}}\right)^{n_{o}}}=\frac{Z\left(S^{3}, \hat{R}_{a}\right)}{Z\left(S^{3}, \hat{R}_{a}\right)^{n_{o}}}=Z\left(S^{3}, \hat{R}_{a}\right)^{1-n_{o}}=\left(\mathcal{S}_{0 a}\right)^{1-n_{o}} \\
& \frac{\operatorname{tr}\left(\rho^{T_{B}}\right)^{n_{e}}}{\left(\operatorname{tr} \rho^{T_{B}}\right)^{n_{e}}}=\frac{Z\left(S^{3}, \hat{R}_{a}\right)^{2}}{Z\left(S^{3}, \hat{R}_{a}\right)^{n_{e}}}=Z\left(S^{3}, \hat{R}_{a}\right)^{2-n_{e}}=\left(\mathcal{S}_{0 a}\right)^{2-n_{e}}
\end{aligned}
$$

Now let us compute the entanglement negativity in various cases

Ex1

(a)
$|\Psi\rangle$

(b)
$\rho_{A \cup B}=|\Psi\rangle\langle\Psi|$

(c)
$\rho_{A \cup B}^{T_{B}}$
n-copies


$$
\begin{aligned}
& \frac{\operatorname{tr}\left(\rho^{T_{B}}\right)^{n_{o}}}{\left(\operatorname{tr} \rho^{T_{B}}\right)^{n_{o}}}=\frac{Z\left(S^{3}, \hat{R}_{a}\right)}{Z\left(S^{3}, \hat{R}_{a}\right)^{n_{o}}}=Z\left(S^{3}, \hat{R}_{a}\right)^{1-n_{o}}=\left(\mathcal{S}_{0 a}\right)^{1-n_{o}} \\
& \frac{\operatorname{tr}\left(\rho^{T_{B}}\right)}{\left(\operatorname{tr} \rho^{T_{B}}\right)^{n_{e}}}=\frac{Z\left(S^{3}, \hat{R}_{a}\right)^{2}}{Z\left(S^{3}, \hat{R}_{a}\right)^{n_{e}}}=Z\left(S^{3}, \hat{R}_{a}\right)^{2-n_{e}}=\left(\mathcal{S}_{0 a}\right)^{2-n_{e}}
\end{aligned}
$$

$$
\mathcal{E}_{A B}=\lim _{n_{e} \rightarrow 1} \ln \frac{\operatorname{tr}\left(\rho^{T_{B}}\right)^{n_{e}}}{\left(\operatorname{tr} \rho^{T_{B}}\right)^{n_{e}}}=\ln \mathcal{S}_{0 a}
$$

## Ex2 (adjacent case)



(c)

(d)
$|\Psi\rangle$

$$
\rho_{A_{1} \cup A_{2}}=\operatorname{tr}_{B}|\Psi\rangle\langle\Psi| . \quad \rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}
$$

## Ex2 (adjacent case)


(a)

(b)

(c)

(d)
$|\Psi\rangle$

$$
\rho_{A_{1} \cup A_{2}}=\operatorname{tr}_{B}|\Psi\rangle\langle\Psi| . \quad \rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}
$$



- "

$\frac{\operatorname{tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n_{o}}}{\left(\operatorname{tr} \rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n_{o}}}=\frac{1}{Z\left(S^{3}, \hat{R}_{a}\right)^{n_{o}}} \cdot \frac{Z\left(S^{3}, \hat{R}_{a}\right)^{2}}{Z\left(S^{3}, \hat{R}_{a}\right)^{n_{o}}}=Z\left(S^{3}, \hat{R}_{a}\right)^{2-2 n_{o}}=\left(\mathcal{S}_{0 a}\right)^{2-2 n_{o}}$
$\frac{\operatorname{tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n_{e}}}{\left(\operatorname{tr} \rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n_{e}}}=\frac{1}{Z\left(S^{3}, \hat{R}_{a}\right)^{n_{e}}} \cdot \frac{Z\left(S^{3}, \hat{R}_{a}\right)^{3}}{Z\left(S^{3}, \hat{R}_{a}\right)^{n_{e}}}=Z\left(S^{3}, \hat{R}_{a}\right)^{3-2 n_{e}}=\left(\mathcal{S}_{0 a}\right)^{3-2 n_{e}}$

$$
\mathcal{E}_{A_{1} A_{2}}(B \neq \emptyset)=\mathcal{E}_{A_{1} A_{2}}(B=\emptyset) .
$$

## Ex3 (disjointed case)


(a)
$|\Psi\rangle$

(b)


$$
\begin{array}{cc}
\text { (c) } & \text { (d) } \\
\rho_{A_{1} \cup A_{2}}= & \operatorname{tr}_{B}|\Psi\rangle\langle\Psi| \\
\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}
\end{array}
$$

## Ex3 (disjointed case)


(a)

(b)
$|\Psi\rangle$

(c)

$$
\frac{\operatorname{tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n}}{\left(\operatorname{tr} \rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n}}=\frac{1}{Z\left(S^{3}, \hat{R}_{a}\right)^{n}} \cdot \frac{Z\left(S^{3}, \hat{R}_{a}\right)^{2}}{Z\left(S^{3}, \hat{R}_{a}\right)^{n}}=Z\left(S^{3}, \hat{R}_{a}\right)^{2-2 n}=\left(\mathcal{S}_{0 a}\right)^{2-2 n}
$$

## Ex3 (disjointed case)


(a)

(b)



$$
\frac{\operatorname{tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n}}{\left(\operatorname{tr} \rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n}}=\frac{1}{Z\left(S^{3}, \hat{R}_{a}\right)^{n}} \cdot \frac{Z\left(S^{3}, \hat{R}_{a}\right)^{2}}{Z\left(S^{3}, \hat{R}_{a}\right)^{n}}=Z\left(S^{3}, \hat{R}_{a}\right)^{2-2 n}=\left(\mathcal{S}_{0 a}\right)^{2-2 n}
$$

$$
\mathcal{E}_{A_{1} A_{2}}=\lim _{n_{e} \rightarrow 1} \ln \frac{\operatorname{tr}\left(\rho^{T_{B}}\right)^{n_{e}}}{\left(\operatorname{tr} \rho^{T_{B}}\right)^{n_{e}}}=\ln \left(\mathcal{S}_{0 a}\right)^{0}=0
$$

## Ex3 (disjointed case)


(a)

(b)

(c)

$$
\frac{\operatorname{tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{A_{2}}}\right)^{n}}{\left(\operatorname{tr}_{\rho_{A_{1} \cup A_{2}}}^{T_{2}}\right)^{n}}=\frac{1}{Z\left(S^{3}, \hat{R}_{a}\right)^{n}} \cdot \frac{Z\left(S^{3}, \hat{R}_{a}\right)^{2}}{Z\left(S^{3}, \hat{R}_{a}\right)^{n}}=Z\left(S^{3}, \hat{R}_{a}\right)^{2-2 n}=\left(\mathcal{S}_{0 a}\right)^{2-2 n}
$$

$$
\mathcal{E}_{A_{1} A_{2}}=\lim _{n_{e} \rightarrow 1} \ln \frac{\operatorname{tr}\left(\rho^{T_{B}}\right)^{n_{e}}}{\left(\operatorname{tr} \rho^{T_{B}}\right)^{n_{e}}}=\ln \left(\mathcal{S}_{0 a}\right)^{0}=0 .
$$

No entanglement if A1 and A2 do not have interfaces!

## More cases



Entanglement negativity for free fermion-hard to compute

Entanglement negativity for Conformal field theory-can measure the entanglement spread under quantum quenches

Entanglement negativity for Chern-Simon theories can relate to geometry and topology

## Conclusion and future directions:

- Entanglement negativity is a very useful tool and links to dynamics, topology and geometry.
- Generalization for higher dimensions?
- Generalization other topological field theories?
- What is the holographic picture for entanglement negativity??
- Evolution of of the entanglement negativity for other quenches?

